Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30642900

RESUMO

The enteric pathogen Shigella is one of the leading causes of moderate-to-severe diarrhea and death in young children in developing countries. Transformed cell lines and animal models have been widely used to study Shigella pathogenesis. In addition to altered physiology, transformed cell lines are composed of a single cell type that does not sufficiently represent the complex multicellular environment of the human colon. Most available animal models do not accurately mimic human disease. The human intestinal enteroid model, derived from LGR5+ stem cell-containing intestinal crypts from healthy subjects, represents a technological leap in human gastrointestinal system modeling and provides a more physiologically relevant system that includes multiple cell types and features of the human intestine. We established the utility of this model for studying basic aspects of Shigella pathogenesis and host responses. In this study, we show that Shigellaflexneri is capable of infecting and replicating intracellularly in human enteroids derived from different segments of the intestine. Apical invasion by S. flexneri is very limited but increases ∼10-fold when enteroids are differentiated to include M cells. Invasion via the basolateral surface was at least 2-log10 units more efficient than apical infection. Increased secretion of interleukin-8 and higher expression levels of the mucin glycoprotein Muc2 were observed in the enteroids following S. flexneri infection. The human enteroid model promises to bridge some of the gaps between traditional cell culture, animal models, and human infection.


Assuntos
Disenteria Bacilar/microbiologia , Intestinos/citologia , Organoides/microbiologia , Shigella flexneri/fisiologia , Células Cultivadas , Humanos , Intestinos/microbiologia , Modelos Biológicos , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Shigella flexneri/genética , Shigella flexneri/crescimento & desenvolvimento , Shigella flexneri/patogenicidade , Células-Tronco/citologia , Células-Tronco/metabolismo , Virulência
2.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602504

RESUMO

CS6, a prevalent surface antigen expressed in nearly 20% of clinical enterotoxigenic Escherichia coli (ETEC) isolates, is comprised of two major subunit proteins, CssA and CssB. Using donor strand complementation, we constructed a panel of recombinant proteins of 1 to 3 subunits that contained combinations of CssA and/or CssB subunits and a donor strand, a C-terminal extension of 16 amino acids that was derived from the N terminus of either CssA or CssB. While the entire panel of recombinant proteins could be obtained as soluble, folded proteins, it was observed that the proteins possessing a heterologous donor strand, derived from the CS6 subunit different from the C-terminal subunit, had the highest degree of physical and thermal stability. Immunological characterization of the proteins, using a murine model, demonstrated that robust anti-CS6 immune responses were generated from fusions containing both CssA and CssB. Proteins containing only CssA were weakly immunogenic. Heterodimers, i.e., CssBA and CssAB, were sufficient to recapitulate the anti-CS6 immune response elicited by immunization with CS6, including the generation of functional neutralizing antibodies, as no further enhancement of the response was obtained with the addition of a third CS6 subunit. Our findings here demonstrate the feasibility of including a recombinant CS6 subunit protein in a subunit vaccine strategy against ETEC.


Assuntos
Antígenos de Bactérias/imunologia , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Escherichia coli Enterotoxigênica/imunologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Subunidades Proteicas/imunologia
3.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311235

RESUMO

Francisella tularensis is a Gram-negative, facultative, intracellular coccobacillus that can infect a wide variety of hosts. In humans, F. tularensis causes the zoonosis tularemia following insect bites, ingestion, inhalation, and the handling of infected animals. The fact that a very small inoculum delivered by the aerosol route can cause severe disease, coupled with the possibility of its use as an aerosolized bioweapon, has led to the classification of Francisella tularensis as a category A select agent and has renewed interest in the formulation of a vaccine. To this end, we engineered a type A strain SchuS4 derivative containing a targeted deletion of the major facilitator superfamily (MFS) transporter fptB Based on the attenuating capacity of this deletion in the F. tularensis LVS background, we hypothesized that the deletion of this transporter would alter the intracellular replication and cytokine induction of the type A strain and attenuate virulence in the stringent C57BL/6J mouse model. Here we demonstrate that the deletion of fptB significantly alters the intracellular life cycle of F. tularensis, attenuating intracellular replication in both cell line-derived and primary macrophages and inducing a novel cytosolic escape delay. Additionally, we observed prominent differences in the in vitro cytokine profiles in human macrophage-like cells. The mutant was highly attenuated in the C57BL/6J mouse model and provided partial protection against virulent type A F. tularensis challenge. These results indicate a fundamental necessity for this nutrient transporter in the timely progression of F. tularensis through its replication cycle and in pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas de Membrana Transportadoras/genética , Tularemia/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Feminino , Francisella tularensis/metabolismo , Deleção de Genes , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Família Multigênica , Deleção de Sequência , Virulência
4.
Protein Expr Purif ; 119: 130-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581778

RESUMO

Enterotoxigenic Escherichia coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera.


Assuntos
Escherichia coli Enterotoxigênica/imunologia , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Fímbrias/isolamento & purificação , Anticorpos Antibacterianos/sangue , Precipitação Química , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas , Humanos , Imunoglobulina G/sangue , Ultracentrifugação
5.
Infect Immun ; 81(9): 3068-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23753632

RESUMO

Shigella species Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods with in vitro and in vivo assays to provide new insights into pathogenesis. Comparisons of in vivo and in vitro gene expression identified genes associated with intracellular growth. Additional bioinformatics analyses identified genes that are present in S. flexneri isolates but not in the three other Shigella species. Comparison of these two analyses revealed nine genes that are differentially expressed during invasion and that are specific to S. flexneri. One gene, a DeoR family transcriptional regulator with decreased expression during invasion, was further characterized and is now designated icgR, for intracellular growth regulator. Deletion of icgR caused no difference in growth in vitro but resulted in increased intracellular replication in HCT-8 cells. Further in vitro and in vivo studies using high-throughput sequencing of RNA transcripts (RNA-seq) of an isogenic ΔicgR mutant identified 34 genes that were upregulated under both growth conditions. This combined informatics and functional approach has allowed the characterization of a gene and pathway previously unknown in Shigella pathogenesis and provides a framework for further identification of novel virulence factors and regulatory pathways.


Assuntos
Shigella flexneri/genética , Fatores de Virulência/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Biologia Computacional/métodos , Disenteria Bacilar/microbiologia , Fibroblastos/microbiologia , Deleção de Genes , Expressão Gênica , Humanos , Camundongos , Prevalência , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Transcrição Gênica , Transcriptoma/genética , Regulação para Cima
6.
PLoS Negl Trop Dis ; 16(7): e0010638, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35881640

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low-to-middle-income countries (LMICs). ETEC adhere to intestinal epithelia via colonization factors (CFs) and secrete heat-stable toxin (ST) and/or heat-labile toxin (LT), causing dysregulated cellular ion transport and water secretion. ETEC isolates often harbor genes encoding more than one CF that are targets as vaccine antigens. CFA/I is a major CF that is associated with ETEC that causes moderate-to-severe diarrhea and plays an important role in pathogenesis. The Global Enteric Multicenter Study finding that 78% of CFA/I-expressing ETEC also encode the minor CF CS21 prompted investigation of the combined role of these two CFs. Western blots and electron microscopy demonstrated growth media-dependent and strain-dependent differences in CFA/I and CS21 expression. The critical role of CFA/I in adherence by ETEC strains expressing CFA/I and CS21 was demonstrated using the human enteroid model and a series of CFA/I- and CS21-specific mutants. Furthermore, only anti-CFA/I antibodies inhibited adherence by global ETEC isolates expressing CFA/I and CS21. Delivery of ST and resulting cGMP secretion was measured in supernatants from infected enteroid monolayers, and strain-specific ST delivery and time-dependent cGMP production was observed. Interestingly, cGMP levels were similar across wildtype and CF-deficient strains, reflecting a limitation of this static aerobic infection model. Despite adherence by ETEC and delivery of ST, the enteroid monolayer integrity was not disrupted, as shown by the lack of decrease in transepithelial electrical resistance and the lack of IL-8 cytokines produced during infection. Taken together, these data demonstrate that targeting CFA/I in global clinical CFA/I-CS21 strains is sufficient for adherence inhibition, supporting a vaccine strategy that focuses on blocking major CFs. In addition, the human enteroid model has significant utility for the study of ETEC pathogenesis and evaluation of vaccine-induced functional antibody responses.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Fímbrias , Criança , Pré-Escolar , Diarreia/prevenção & controle , Escherichia coli Enterotoxigênica/genética , Enterotoxinas/genética , Enterotoxinas/metabolismo , Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Humanos
7.
Infect Immun ; 79(12): 4912-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21969003

RESUMO

Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens.


Assuntos
Vacinas Bacterianas/imunologia , Disenteria Bacilar/prevenção & controle , Toxinas Shiga/imunologia , Toxinas Shiga/metabolismo , Shigella dysenteriae/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Cobaias , Células HeLa , Humanos , Toxinas Shiga/genética , Shigella dysenteriae/patogenicidade , Vacinas Atenuadas/imunologia , Virulência
8.
Pathogens ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578112

RESUMO

Shigella is a leading cause of bacillary dysentery worldwide, responsible for high death rates especially among children under five in low-middle income countries. Shigella sonnei prevails in high-income countries and is becoming prevalent in industrializing countries, where multi-drug resistant strains have emerged, as a significant public health concern. One strategy to combat drug resistance in S. sonnei is the development of effective vaccines. There is no licensed vaccine against Shigella, and development has been hindered by the lack of an effective small-animal model. In this work, we used human enteroids, for the first time, as a model system to evaluate a plasmid-stabilized S. sonnei live attenuated vaccine strain, CVD 1233-SP, and a multivalent derivative, CVD 1233-SP::CS2-CS3, which expresses antigens from enterotoxigenic Escherichia coli. The strains were also tested for immunogenicity and protective capacity in the guinea pig model, demonstrating their ability to elicit serum and mucosal antibody responses as well as protection against challenge with wild-type S. sonnei. These promising results highlight the utility of enteroids as an innovative preclinical model to evaluate Shigella vaccine candidates, constituting a significant advance for the development of preventative strategies against this important human pathogen.

9.
Virulence ; 11(1): 283-294, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32241221

RESUMO

There is a need for development of an effective vaccine against Francisella tularensis, as this potential bioweapon has a high mortality rate and low infectious dose when delivered via the aerosol route. Moreover, this Tier 1 agent has a history of weaponization. We engineered targeted mutations in the Type A strain F. tularensis subspecies tularensis Schu S4 in aro genes encoding critical enzymes in aromatic amino acid biosynthesis. F. tularensis Schu S4ΔaroC, Schu S4ΔaroD, and Schu S4ΔaroCΔaroD mutant strains were attenuated for intracellular growth in vitro and for virulence in vivo and, conferred protection against pulmonary wild-type (WT) F. tularensis Schu S4 challenge in the C57BL/6 mouse model. F. tularensis Schu S4ΔaroD was identified as the most promising vaccine candidate, demonstrating protection against high-dose intranasal challenge; it protected against 1,000 CFU Schu S4, the highest level of protection tested to date. It also provided complete protection against challenge with 92 CFU of a F. tularensis subspecies holarctica strain (Type B). Mice responded to vaccination with Schu S4ΔaroD with systemic IgM and IgG2c, as well as the production of a functional T cell response as measured in the splenocyte-macrophage co-culture assay. This vaccine was further characterized for dissemination, histopathology, and cytokine/chemokine gene induction at defined time points following intranasal vaccination which confirmed its attenuation compared to WT Schu S4. Cytokine, chemokine, and antibody induction patterns compared to wild-type Schu S4 distinguish protective vs. pathogenic responses to F. tularensis and elucidate correlates of protection associated with vaccination against this agent.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Citocinas/imunologia , Francisella tularensis/genética , Francisella tularensis/imunologia , Macrófagos/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Feminino , Deleção de Genes , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/imunologia , Virulência
10.
Pathog Dis ; 74(5)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27106253

RESUMO

Shigella flexneri is a leading cause of diarrheal disease in children under five in developing countries. There is currently no licensed vaccine and broad spectrum protection requires coverage of multiple serotypes. The live attenuated vaccines CVD 1213 and CVD 1215 were derived from two prominent S. flexneri serotypes: S. flexneri 3a and S. flexneri 6. To provide broad-spectrum immunity, they could be combined with CVD 1208S, a S. flexneri 2a strain that demonstrated promising results in phase I and II clinical trials. Each strain contains a mutation in the guaBA operon. These vaccine candidates were tested in vitro and in vivo and were found to be auxotrophic for guanine and defective in intracellular replication, but capable of inducing cytokine production from both epithelial cells and macrophages. Both strains were attenuated for virulence in the guinea pig Serény test and induced robust serotype-specific antibody responses following immunization. Each strain induced homologous serotype protection against challenge and a mixed inoculum of the three S. flexneri vaccines conferred protection against all three virulent wild-type strains. These data support the use of CVD 1213, CVD 1215 and CVD 1208S in a multivalent vaccine to confer broad protection against disease caused by Shigella flexneri.


Assuntos
Disenteria Bacilar/imunologia , Disenteria Bacilar/prevenção & controle , Vacinas contra Shigella/imunologia , Shigella flexneri/imunologia , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Linhagem Celular , Citotoxicidade Imunológica , Modelos Animais de Doenças , Disenteria Bacilar/metabolismo , Ensaio de Imunoadsorção Enzimática , Cobaias , Humanos , Imunização , Macrófagos/imunologia , Macrófagos/metabolismo , Mutação , Plasmídeos/genética , Virulência
11.
Gut Microbes ; 7(6): 486-502, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27657187

RESUMO

Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium and causes millions of cases of watery diarrhea or bacillary dysentery predominately in children under the age of 5 years in developing countries. The effector Shigella enterotoxin 2 (ShET2), or OspD3, is encoded by the sen or ospD3 gene on the virulence plasmid. Previous literature has suggested that ospD3 is in an operon downstream of the ospC1 gene, and expression of both genes is controlled by a promoter upstream of ospC1. Since the intergenic region is 328 bases in length and contains several putative promoter regions, we hypothesized the genes are independently expressed. Here we provide data that ospD3 and ospC1 are not co-transcribed and that OspC1 is not required for OspD3/ShET2 function. Most importantly, we identified strong promoter activity in the intergenic region and demonstrate that OspD3/ShET2 can be expressed and secreted independently of OspC1. This work increases our understanding of the synthesis of a unique virulence factor and provides further insights into Shigella pathogenesis.


Assuntos
Proteínas de Bactérias/biossíntese , Disenteria Bacilar/microbiologia , Regulação Bacteriana da Expressão Gênica , Shigella flexneri/metabolismo , Proteínas de Bactérias/genética , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Shigella flexneri/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
12.
Pathog Dis ; 73(6): ftv036, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986219

RESUMO

Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 10(5) CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/genética , Francisella tularensis/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Modelos Animais de Doenças , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/fisiologia , Deleção de Genes , Genes Bacterianos , Dose Letal Mediana , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA