Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Monit Assess ; 191(6): 388, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31115701

RESUMO

Many rivers in urbanised catchments in South Africa are polluted by raw sewage and effluent to an extent that their ecological function has been severely impaired. The Hennops and Jukskei Rivers lying in the Hartbeespoort Dam catchment are two of the worst impacted rivers in South Africa and are in need of rehabilitation. Passive sampling (Chemcatcher® with a HLB receiving phase) together with high-resolution tandem mass spectrometry-targeted screening was used to provide high sensitivity and selectivity for the identification of a wide range of emerging pollutants in these urban waters. Over 200 compounds, including pesticides, pharmaceuticals and personal care products, drugs of abuse and their metabolites were identified. Many substances (~ 180) being detected for the first time in surface water in South Africa. General medicines and psychotropic drugs were the two most frequently detected groups in the catchment. These accounted for 49% of the emerging pollutants found. Of the general medicines, antihypertensive agents, beta-blocking and cardiac drugs were the most abundant (28%) classes detected. The Hennops site, downstream of a dysfunctional wastewater treatment plant, was the most polluted with 123 substances detected. From the compounds detected, peak intensity-based prioritisation was used to identify the five most abundant pollutants, being in the order caffeine > lopinavir > sulfamethoxazole > cotinine > trimethoprim. This work provides the largest available high-quality dataset of emerging pollutants detected in South African urban waters. The data generated in this study provides a solid foundation for subsequent work to further characterise (suspect screening) and quantify (target analysis) these substances.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Esgotos/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Praguicidas/análise , Preparações Farmacêuticas/análise , África do Sul
2.
Environ Monit Assess ; 191(2): 75, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30648204

RESUMO

Metaldehyde is recognised as an emerging contaminant. It is a powerful molluscicide and is the active compound in many types of slug pellets used for the protection of crops. The application of pellets to land generally takes place between August and December when slugs thrive. Due to its high use and physico-chemical properties, metaldehyde can be present in the aquatic environment at concentrations above the EU Drinking Water Directive limit of 100 ng L-1 for a single pesticide. Such high concentrations are problematic when these waters are used in the production of drinking water. Being able to effectively monitor this pollutant of concern is important. We compared four different monitoring techniques (spot and automated bottle sampling, on-line gas chromatography/mass spectrometry (GC/MS) and passive sampling) to estimate the concentration of metaldehyde. Trials were undertaken in the Mimmshall Brook catchment (Hertfordshire, UK) and in a feed in a drinking water treatment plant for differing periods between 17th October and 31st December 2017. This period coincided with the agricultural application of metaldehyde. Overall, there was a good agreement between the concentrations measured by the four techniques, each providing complementary information. The highest resolution data was obtained using the on-line GC/MS. During the study, there was a large exceedance (500 ng L-1) of metaldehyde that entered the treatment plant; but this was not related to rainfall in the area. Each monitoring method had its own advantages and disadvantages for monitoring investigations, particularly in terms of cost and turn-a-round time of data.


Assuntos
Acetaldeído/análogos & derivados , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Acetaldeído/análise , Agricultura , Produtos Agrícolas , Água Potável/análise , Cromatografia Gasosa-Espectrometria de Massas , Moluscocidas , Purificação da Água
3.
Environ Sci Technol ; 50(17): 9469-78, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27491812

RESUMO

Passive sampling is proposed as an alternative to traditional grab- and composite-sampling modes. Investigated here is a novel passive sampler configuration, the Chemcatcher containing an Atlantic HLB disk covered by a 0.2 µm poly(ether sulfone) membrane, for monitoring polar organic micropollutants (personal care products, pharmaceuticals, and illicit drugs) in wastewater effluent. In situ calibration showed linear uptake for the majority of detected micropollutants over 9 days of deployment. Sampling rates (RS) were determined for 59 compounds and were generally in the range of 0.01-0.10 L day(-1). The Chemcatcher was also suitable for collecting chiral micropollutants and maintaining their enantiomeric distribution during deployment. This is essential for their future use in developing more accurate environmental risk assessments at the enantiomeric level. Application of calibration data in a subsequent monitoring study showed that the concentration estimated for 92% of micropollutants was within a factor of 2 of the known concentration. However, their application in a legislative context will require further understanding of the properties and mechanisms controlling micropollutant uptake to improve the accuracy of reported concentrations.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Calibragem , Poluentes Químicos da Água
4.
Environ Sci Pollut Res Int ; 30(7): 17965-17983, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205867

RESUMO

The River Itchen and River Test, two chalk streams in Southern England, are sites of special scientific interest. These ecosystems face a number of environmental pressures from anthropogenic inputs of organic pollutants. Hence, we investigated the occurrence of these chemicals within the two catchments. Spot water samples (1 L) were collected at nineteen sites along the catchment on two occasions (March and June 2019). Samples were extracted (HLB-L sorbent disks) and analysed using high-resolution liquid chromatography-quadrupole-time-of-flight mass spectrometry and gas chromatography-mass spectrometry. Compounds were identified against commercially available databases. Using this approach, we found 115 pharmaceutical and personal care products, 81 plant protection products and 35 industrial chemicals. This complex mixture of pollutants covered a range of physico-chemical properties and included priority substances in the EU Water Framework Directive or currently on the third Watch List. Both rivers had similar chemical profiles for both months. Herbicides and fungicides were dominant in the spring, whereas insecticides occurred more frequently in the summer. Point discharges from wastewater treatment plants were the main source of pharmaceutical and personal care products. Agricultural activities were the main contributor to the presence of plant protection products. The impact of these organic chemicals on the ecology, particularly on macroinvertebrate biodiversity, is unknown and warrants further investigation. Our suspect screening approach could guide future toxicological investigations to assess the environmental impacts of these diverse chemicals.


Assuntos
Cosméticos , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Ecossistema , Cosméticos/análise , Preparações Farmacêuticas , Reino Unido , Monitoramento Ambiental
5.
Water Res ; 222: 118865, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868101

RESUMO

Emerging contaminants such as polar pesticides pose a potential risk to human health due to their presence in drinking water. However, their occurrence and fate in drinking water treatment plants is poorly understood. In this study we use passive sampling coupled to suspect screening and multivariate analysis to describe pesticide fate throughout the treatment stream of an operational drinking water treatment plant. ChemcatcherÒ passive sampling devices were deployed at sites (n = 6) positioned at all stages of the treatment stream during consecutive deployments (n = 20) over a twelve-month period. Sample extracts (n = 120) were analysed using high-resolution liquid chromatography-quadrupole-time-of-flight mass spectrometry and compounds identified against a commercially available database. A total of 58 pesticides and transformation products from different classes were detected. Statistical analysis of the qualitative screening data was performed to identify clusters of pesticides with similar fate during ozonation, granular activated carbon (GAC) filtration, and chlorination. The performance of each treatment process was investigated. Adsorption to GAC media was found to account for the greatest proportion of pesticide attenuation (average removal of 70% based on detection frequency), however, operational performance varied for certain pesticides during periods of episodic and sustained pollution. GAC breakthrough occurred for 21 compounds detected in the GAC filtrate. Eleven pesticides were found to occur in potable water following treatment. We developed a management plan containing controls, triggers, and responses, for five pesticides and a metabolite (atrazine, atrazine desethyl, DEET, dichlorobenzamide, metazachlor, and propyzamide) prioritised based on their current and future risk to treated water quality.


Assuntos
Atrazina , Água Potável , Praguicidas , Poluentes Químicos da Água , Água Potável/análise , Monitoramento Ambiental/métodos , Humanos , Análise Multivariada , Praguicidas/análise , Poluentes Químicos da Água/análise
6.
Chemosphere ; 308(Pt 2): 136313, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36067814

RESUMO

Environmental pollution has strong links to adverse human health outcomes with risks of pollution through production, use, ineffective wastewater (WW) remediation, and/or leachate from landfill. 'Fit-for-purpose' monitoring approaches are critical for better pollution control and mitigation of harm, with current sample preparation methods for complex environmental matrices typically time-consuming and labour intensive, unsuitable for high-throughput screening. This study has shown that a modified 'Quick Easy Cheap Effective Rugged and Safe' (QuEChERS) sample preparation is a viable alternative for selected environmental matrices required for pollution monitoring (e.g. WW effluent, treated sludge cake and homogenised biota tissue). As a manual approach, reduced extraction times (hours to ∼20 min/sample) with largely reproducible (albeit lower) recoveries of a range of pharmaceuticals and biocidal surfactants have been reported. Its application has shown clear differentiation of matrices via chemometrics, and the measurement of pollutants of interest to the UK WW industry at concentrations significantly above suggested instrument detection limits (IDL) for sludge, indicating insufficient removal and/or bioaccumulation during WW treatment. Furthermore, new pollutant candidates of emerging concern were identified - these included detergents, polymers and pharmaceuticals, with quaternary ammonium compound (QAC) biocides observed at 2.3-70.4 mg/kg, and above levels associated with priority substances for environmental quality regulation (EQSD). Finally, the QuEChERS protocol was adapted to function as a fully automated workflow, further reducing the resource to complete both the preparation and analysis to <40 min. This operated with improved recovery for soil and biota (>62%), and when applied to a largely un-investigated clay matrix, acceptable recovery (88.0-131.1%) and precision (≤10.3% RSD) for the tested pharmaceuticals and biocides was maintained. Therefore, this preliminary study has shown the successful application of a high-throughput QuEChERS protocol across a range of environmental solids for potential deployment in a regulated laboratory.


Assuntos
Desinfetantes , Poluentes Ambientais , Argila , Detergentes , Desinfetantes/análise , Poluentes Ambientais/análise , Humanos , Preparações Farmacêuticas , Polímeros/análise , Compostos de Amônio Quaternário/análise , Esgotos , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise
7.
Sci Total Environ ; 787: 147519, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992941

RESUMO

Pollution of surface water by polar pesticides is a major environmental risk, particularly in river catchments where potable water supplies are abstracted. In these cases, there is a need to understand pesticide sources, occurrence and fate. Hence, we developed a novel strategy to improve water quality management at the catchment scale using passive sampling coupled to suspect screening and multivariate analysis. Chemcatcher® passive sampling devices were deployed (14 days) over a 12 month period at eight sites (including a water supply works abstraction site) in the Western Rother, a river catchment in South East England. Sample extracts (n = 197) were analysed using high-resolution liquid chromatography-quadrupole-time-of-flight mass spectrometry and compounds identified against a commercially available database. A total of 128 pesticides from different classes were found. Statistical analysis of the qualitative screening data was used to identify clusters of pesticides with similar spatiotemporal pollution patterns. This enabled pesticide sources and fate to be identified. At the water supply works abstraction site, spot sampling and passive sampling were found to be complementary, however, the passive sampling method in conjunction with suspect screening detected 50 pesticides missed by spot sampling combined with targeted analysis. Geospatial data describing pesticide application rates was found to be poorly correlated to their detection frequency using the Chemcatcher®. Our analysis prioritised 61 pesticides for inclusion in a future water quality risk assessment at the abstraction site. It was also possible to design a seasonal monitoring programme to effectively characterise the spatiotemporal pesticide profiles within the catchment. A work flow of how to incorporate passive sampling coupled to suspect screening into existing regulatory monitoring is proposed. Our novel approach will enable water quality managers to target the mitigation (non-engineered actions) of pesticide pollution within the catchment and hence, to better inform drinking water treatment processes and save on operational costs.

8.
Anal Methods ; 13(5): 595-606, 2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33427827

RESUMO

A novel and rapid approach to characterise the occurrence of contaminants of emerging concern (CECs) in river water is presented using multi-residue targeted analysis and machine learning-assisted in silico suspect screening of passive sampler extracts. Passive samplers (Chemcatcher®) configured with hydrophilic-lipophilic balanced (HLB) sorbents were deployed in the Central London region of the tidal River Thames (UK) catchment in winter and summer campaigns in 2018 and 2019. Extracts were analysed by; (a) a rapid 5.5 min direct injection targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for 164 CECs and (b) a full-scan LC coupled to quadrupole time of flight mass spectrometry (QTOF-MS) method using data-independent acquisition over 15 min. From targeted analysis of grab water samples, a total of 33 pharmaceuticals, illicit drugs, drug metabolites, personal care products and pesticides (including several EU Watch-List chemicals) were identified, and mean concentrations determined at 40 ± 37 ng L-1. For targeted analysis of passive sampler extracts, 65 unique compounds were detected with differences observed between summer and winter campaigns. For suspect screening, 59 additional compounds were shortlisted based on mass spectral database matching, followed by machine learning-assisted retention time prediction. Many of these included additional pharmaceuticals and pesticides, but also new metabolites and industrial chemicals. The novelty in this approach lies in the convenience of using passive samplers together with machine learning-assisted chemical analysis methods for rapid, time-integrated catchment monitoring of CECs.

9.
Environ Sci Pollut Res Int ; 27(22): 27995-28005, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32405945

RESUMO

Chemcatcher® and POCIS passive sampling devices are widely used for monitoring polar organic pollutants in water. Chemcatcher® uses a bound Horizon Atlantic™ HLB-L sorbent disk as receiving phase, whilst the POCIS uses the same material in the form of loose powder. Both devices (n = 3) were deployed for 21 days in the final effluent at three wastewater treatment plants in South Wales, UK. Following deployment, sampler extracts were analysed using liquid chromatography time-of-flight mass spectrometry. Compounds were identified using an in-house database of pharmaceuticals using a metabolomics workflow. Sixty-eight compounds were identified in all samplers. For the POCIS, substantial losses of sorbent (11-51%) were found during deployment and subsequent laboratory analysis, necessitating the use of a recovery factor. Percentage relative standard deviations varied (with 10 compounds exceeding 30% in both samplers) between individual compounds and between samplers deployed at the three sites. The relative performance of the two devices was evaluated using the mass of analyte sequestered, measured as an integrated peak area. The ratio of the uptake of the pharmaceuticals for the POCIS versus Chemcatcher® was lower (1.84x) than would be expected on the basis of the ratio of active sampling areas (3.01x) of the two devices. The lower than predicted uptake may be attributable to the loose sorbent material moving inside the POCIS when deployed in the field in the vertical plane. In order to overcome this, it is recommended to deploy the POCIS horizontally inside the deployment cage.


Assuntos
Águas Residuárias/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Monitoramento Ambiental , Compostos Orgânicos
10.
Anal Methods ; 12(32): 4015-4027, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32744281

RESUMO

Pesticides present at trace concentrations are a common cause of poor water quality. Their concentrations can change dynamically, due to the stochastic nature of pesticide pollution. Consequently, characterisation of pesticide residues that are intermittently present, poses significant monitoring and analytical challenges. Traditional approaches rely on quantitation of a limited number of pesticides present in a discrete water sample. Expanding the analytical suite and/or the frequency of sampling to meet these challenges is often impractical. Comprehensive methods are needed, with selectivity and sensitivity for the hundreds of pesticides potentially present, and temporal representativeness to ensure changing conditions are understood, in order to identify and prioritise risk. Recent analytical advances have enabled the targeted screening of hundreds of compounds in the same run, and automated work-flows can now reliably identify compounds through the comparison of retention time and accurate mass with spectral libraries. Screening generates large qualitative data sets, therefore, there is a need for improved monitoring methods and data interpretation strategies to reduce the need for repetition, and increase the quality of information for end-users. Passive sampling is an in situ time integrative technique, increasingly used for monitoring pesticides in water. Here, we describe a method using the Chemcatcher® passive sampler, coupled to targeted screening using liquid chromatography-quadrupole-time-of-flight mass spectrometry, and a commercially available library. Statistical analysis was performed using Agilent Mass Profiler Professional software. Water sampling took place over one year, at three riverine sites in the south of England, UK. Statistical interpretation of time integrative data from passive sampling could distinguish regular and episodic pesticide inputs, and detected compounds neglected by routine monitoring methods. One hundred and eleven pesticides were identified including legacy and current use compounds with diverse origins and uses. Spatial and temporal trends were identified enabling prioritisation of seasonal monitoring at each site. This approach maximises the utility of qualitative assessment and may help water quality managers to rationalise pesticide fate in future, providing significant additional insight without the need to increase the scope and cost of monitoring.

11.
Environ Sci Pollut Res Int ; 25(25): 25130-25142, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29943243

RESUMO

Acidic herbicides are used to control broad-leaved weeds. They are stable, water-soluble, and with low binding to soil are found frequently in surface waters, often at concentrations above the EU Drinking Water Directive limit of 0.10 µg L-1. This presents a problem when such waters are abstracted for potable supplies. Understanding their sources, transport and fate in river catchments is important. We developed a new Chemcatcher® passive sampler, comprising a 3M Empore™ anion-exchange disk overlaid with a polyethersulphone membrane, for monitoring acidic herbicides (2,4-D, dicamba, dichlorprop, fluroxypyr, MCPA, MCPB, mecoprop, tricolpyr). Sampler uptake rates (Rs = 0.044-0.113 L day-1) were measured in the laboratory. Two field trials using the Chemcatcher® were undertaken in the River Exe catchment, UK. Time-weighted average (TWA) concentrations of the herbicides obtained using the Chemcatcher® were compared with concentrations measured in spot samples of water. The two techniques gave complimentary monitoring data, with the samplers being able to measure stochastic inputs of MCPA and mecoprop occurring in field trial 1. Chemcatcher® detected a large input of MCPA not found by spot sampling during field trial 2. Devices also detected other pesticides and pharmaceuticals with acidic properties. Information obtained using the Chemcatcher® can be used to develop improved risk assessments and catchment management plans and to assess the effectiveness of any mitigation and remediation strategies.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Herbicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Calibragem , Praguicidas/análise , Preparações Farmacêuticas/análise , Reino Unido , Movimentos da Água
12.
Environ Sci Process Impacts ; 20(8): 1180-1190, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30062348

RESUMO

Metaldehyde is a molluscicide and the active ingredient in formulated slug pellets used for the protection of crops. Due to its mobility in the environment it is frequently found in river catchments, often at concentrations exceeding the EU Drinking Water Directive limit of 100 ng L-1 for a single pesticide. This presents a major problem for water companies in the UK where such waters are abstracted for production of potable drinking water supplies. Therefore, it is important to understand the sources, transport and fate of this emerging pollutant of concern in the aquatic environment. We monitored metaldehyde in two contrasting river catchments (River Dee (8 sites) and River Thames (6 sites)) over a twelve month period that coincided with the agricultural application period of the molluscicide. Spot samples of water were collected typically weekly or fortnightly. Chemcatcher® passive samplers were deployed consecutively every two weeks. At the River Dee, there was little variability in the concentrations of metaldehyde (<10-110 ng L-1) measured in the spot samples of water. The Chemcatcher® gave similar time-weighted average concentrations which were higher following increased rain fall events. At the River Thames, concentrations of metaldehyde varied more widely (<9-4200 ng L-1) with several samples exceeding 100 ng L-1. Generally these concentrations were reflected in the time-weighted average concentrations obtained using the Chemcatcher®. Both monitoring techniques gave complementary data for identifying input sources, and in the development of catchment management plans and environmental remediation strategies.


Assuntos
Acetaldeído/análogos & derivados , Monitoramento Ambiental/métodos , Moluscocidas/análise , Poluentes Químicos da Água/análise , Acetaldeído/análise , Agricultura , Água Potável , Rios , Reino Unido
13.
Talanta ; 179: 57-63, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29310277

RESUMO

Metaldehyde is a potent molluscicide. It is the active ingredient in most slug pellets used for crop protection. This polar compound is considered an emerging pollutant. Due to its environmental mobility, metaldehyde is frequently detected at impacted riverine sites, often at concentrations above the EU Drinking Water Directive limit of 0.1µgL-1 for an individual pesticide. This presents a problem when such waters are abstracted for use in the production of potable water supplies, as this chemical is difficult to remove using conventional treatment processes. Understanding the sources, transport and fate of this pollutant in river catchments is therefore important. We developed a new variant of the Chemcatcher® passive sampler for monitoring metaldehyde comprising a Horizon Atlantic™ HLB-L disk as the receiving phase overlaid with a polyethersulphone membrane. The sampler uptake rate (Rs) was measured in semi-static laboratory (Rs = 15.7mLday-1) and in-field (Rs = 17.8mLday-1) calibration experiments. Uptake of metaldehyde was linear over a two-week period, with no measurable lag phase. Field trials (five consecutive 14day periods) using the Chemcatcher® were undertaken in eastern England at three riverine sites (4th September-12th November 2015) known to be impacted by the seasonal agricultural use of metaldehyde. Spot samples of water were collected regularly during the deployments, with concentrations of metaldehyde varying widely (~ 0.03-2.90µgL-1) and often exceeding the regulatory limit. Time weighted average concentrations obtained using the Chemcatcher® increased over the duration of the trial corresponding to increasing stochastic inputs of metaldehyde into the catchment. Monitoring data obtained from these devices gives complementary information to that obtained by the use of infrequent spot sampling procedures. This information can be used to develop risk assessments and catchment management plans and to assess the effectiveness of any mitigation and remediation strategies.

14.
MethodsX ; 3: 188-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054094

RESUMO

The molluscicide metaldehyde (2,4,6,8-tetramethyl-1,3,5,7-tetraoxocanemetacetaldehyde) is an emerging pollutant. It is frequently detected in surface waters, often above the European Community Drinking Water Directive limit of 0.1 µg/L for a single pesticide. Gas chromatography mass spectrometry (GC-MS) can be used to determine metaldehyde in environmental waters, but this method requires time consuming extraction techniques prior to instrumental analysis. Use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) can overcome this problem. We describe a novel LC-MS/MS method, using a methylamine mobile phase additive, coupled with on-line sample enrichment that allows for the rapid and sensitive measurement of metaldehyde in surface water. Only the methylamine adduct of metaldehyde was formed with other unwanted alkali metal adducts and dimers being suppressed. As considerably less collision energy is required to fragment the methylamine adduct, a five-fold improvement in method sensitivity, compared to a previous method using an ammonium acetate buffer mobile phase was achieved. This new approach offers: •A validated method that meets regulatory requirements for the determination of metaldehyde in surface water.•Improved reliability of quantification over existing LC-MS/MS methods by using stable precursor ions for multiple reaction monitoring.•Low limits of quantification for tap water (4 ng/L) and river water (20 ng/L) using only 800 µL of sample; recoveries > 97%.

15.
MethodsX ; 3: 490-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504267

RESUMO

Tributyltin (TBT) is a legacy pollutant in the aquatic environment, predominantly from its use in anti-foulant paints and is listed as a priority hazardous substance in the European Union's Water Framework Directive (WFD). Measuring low concentrations of TBT and other organotins (e.g. monobutyltin (MBT), dibutyltin (DBT), diphenyltin (DPhT) and triphenyltin (TPhT)) at sub ng/L concentrations in coastal waters using standard laboratory instrumentation is very challenging. Conventional, low injection volume gas chromatography/mass spectrometry (GC/MS) combined with liquid-liquid extraction typically achieves limits of detection for TBT ∼10 ng L(-1). We describe a simple, programmed temperature vaporisation-large injection volume (50 µL), GC/MS selected ion monitoring method for measuring DBT, TBT, DPhT and TPhT in coastal waters at lower concentrations. Quantification of MBT was not possible using these injection volumes but was achieved using a 10 µL injection volume together with a reduced injection speed. This new approach offers: •When using a 50 µL injection, limits of detection = 0.70 ng L(-1) and limits of quantification = 2.1 ng L(-1) for TBT were achieved in derivatised standards.•Recoveries of TBT and TPhT from coastal water >97%.•Time consuming, off-line sample pre-concentration methods are unnecessary.

16.
Environ Sci Process Impacts ; 16(3): 369-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390685

RESUMO

The following provides a short overview of the important topics arising from the 6(th) International Passive Sampling Workshop and Symposium (IPSW 2013) held in Bordeaux, France between 26 and 29(th) June, 2013. Most of the discussions focussed on monitoring non-polar and polar organic pollutants in water with less coverage on air (probably already seen as a mature technology for this medium) and sediments. The use of passive sampling devices within regulatory water monitoring programmes was also a major theme of the Workshop.


Assuntos
Monitoramento Ambiental/instrumentação , Poluentes Ambientais/análise , Monitoramento Ambiental/métodos , Política Ambiental , Poluição Ambiental/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA