RESUMO
In recent years, members of the Coronaviridae family have caused outbreaks of respiratory diseases (MERS, SARS, and COVID-19). At the same time, the potential of radiation-induced inactivation of this group of viruses have been little studied, although radiation technologies can be widely used both in the processing of personal protective equipment and in the sterilization of vaccines. In the present work, the effect of 10 MeV electron beams and 7.6 MeV bremsstrahlung on the coronavirus infection pathogen (transmissible gastroenteritis virus) has been studied in vitro. In the given experimental conditions, irradiation with photons turned out to be more effective. The virus-containing suspension frozen at -86°C was the most resistant to radiation: the dose required for complete inactivation of the virus in this case was from 15 kGy, while for the liquid suspension and lyophilized form the sterilizing dose was from 10 kGy. At lower radiation doses for all samples during passaging in cell culture, residual infectious activity of the virus was observed. These differences in the efficiency of inactivation of liquid and frozen virus-containing samples indicate a significant contribution of the direct effect of radiation.
RESUMO
Here, we present the results of a study in which 639 samples obtained between October 2018 and April 2019 from patients with symptoms of acute gastroenteritis were tested for the presence of a rotavirus infection. The antigen of group A rotavirus was detected in 160 samples (25% of those tested). To study the genetic diversity of group A rotavirus, RNA was isolated from the samples, and polymerase chain reaction combined with reverse transcription (RT-PCR) with primers specific for the VP4, VP6, and VP7 genes of group A rotaviruses was performed. At least one fragment of the group A rotavirus genome was found in 101 samples (15.8%). These fragments were sequenced, and their G and P genotypes-as well as their combinations-were determined. The predominant G genotypes were G9 (35.8% of all genotyped samples) and G4 (28.4%), but the rare G12 genotype was also found (3.0%). The dominant P genotype was P[8]. The spectrum of certain G/P combinations of genotypes included seven variants. The most common variants were G9P[8] (37.2%) and G4P[8] (30.2%).
Assuntos
Variação Genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Genótipo , Humanos , Lactente , Pessoa de Meia-Idade , Moscou , Filogenia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Adulto JovemRESUMO
Cosmic dust samples from the surface of the illuminator of the International Space Station (ISS) were collected by a crew member during his spacewalk. The sampler with tampon in a vacuum container was delivered to the Earth. Washouts from the tampon's material and the tampon itself were analyzed for the presence of bacterial DNA by the method of nested PCR with primers specific to DNA of the genus Mycobacteria, DNA of the strains of capsular bacteria Bacillus, and DNA encoding 16S ribosomal RNA. The results of amplification followed by sequencing and phylogenetic analysis indicated the presence of the bacteria of the genus Mycobacteria and the extreme bacterium of the genus Delftia in the samples of cosmic dust. It was shown that the DNA sequence of one of the bacteria of the genus Mycobacteria was genetically similar to that previously observed in superficial micro layer at the Barents and Kara seas' coastal zones. The presence of the wild land and marine bacteria DNA on the ISS suggests their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit. Alternatively, the wild land and marine bacteria as well as the ISS bacteria may all have an ultimate space origin.
Assuntos
Poeira Cósmica/análise , DNA Bacteriano/genética , Planeta Terra , Oceanos e Mares , Astronave , Sequência de Bases , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
The study of the antigenic and molecular genetic structure of human acute encephalomyelitis virus (HAEV) showed a high similarity of the HAEV N gene with the homologous gene of the fixed rabies virus strain. The results of the nucleotide sequence analysis indicate that HAEV belongs to the lyssavirus genotype 1. The N gene sequence is the closest to those of the ERA-CB20-M and RV-97 strains of the rabies virus. The need for further research into the role of the human acute encephalomyelitis virus in human pathology stems from past surveys that revealed the presence of the VNAs against this virus in 6 per cent of the blood received from donors in the USA and in each third among the patients with multiple sclerosis in the former USSR.
Assuntos
Encefalomielite/virologia , Esclerose Múltipla/virologia , Filogenia , Theilovirus/genética , Feminino , Humanos , Masculino , Theilovirus/isolamento & purificaçãoRESUMO
The molecular genetic analysis of the genomes of the virus of porcine reproductive respiratory syndrome (VPRRS) and porcine circovirus type 2 (PCV-2) circulating in the area of the Russian Federation was discussed. The results of this work showed the circulation of the strains of the European genotype VPRRS similar to those found in France and Denmark from 1998 to 2001. The homology of the fragment of one of the genes between the Russian isolates and the vaccine strain Porcilis PRRS (Intervet) was found. It requires further study. The strains representing the North American genotype VPRRS were not found. The PCV-2 genomes fall into three separate goups. One (genotype 2b) is formed by isolates in Malaysia, Brazil, Switzerland, China, Slovakia, UK, USA, isolated during the period from 2004 to the present time. The second group consists of sequences of the viruses isolated in 2000-2012 in Canada, the U.S., China, and South Korea (genotype 2a). The third group is formed by highly pathogenic isolates in 2013 from China (highly pathogenic genotype 2c). The circulation of all three known genotypes of PCV-2: 2a, 2b, and 2c in Russian Federation was demonstrated.
Assuntos
Circovirus/genética , Filogenia , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Sequência de Aminoácidos , Animais , Circovirus/patogenicidade , Genoma Viral , Genótipo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Federação Russa , SuínosRESUMO
The results obtained using the diagnostic kit based on real-time polymerase chain reaction to detect the DNA of the African Swine Fever in the pathological material, as well as in the culture fluid, are presented. A high sensitivity and specificity for detection of the DNA in the organs and tissues of animals was shown to be useful for detection in the European Union referentiality reagent kits for DNA detection by real time PCR of ASFV. More rapid and effective method of DNA extraction using columns mini spin Quick gDNA(TM) MiniPrep was suggested and compared to the method of DNA isolation on the inorganic sorbent. High correlation of the results of the DNA detection of ASFV by real-time PCR and antigen detection results ASFV by competitive ELISA obtained with the ELISA SEROTEST/INGEZIM COMRAC PPA was demonstrated. The kit can be used in the veterinary services for effective monitoring of ASFV to contain, eliminate and prevent further spread of the disease.
Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , DNA Viral/genética , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Febre Suína Africana/virologia , Animais , Antígenos Virais/imunologia , Primers do DNA/síntese química , Sondas de DNA/síntese química , DNA Viral/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade , SuínosRESUMO
Reverse genetics was applied to engineering of the reassortantvaccine candidate strain against highly pathogenic avian influenza viruses (HPAIVs) of the H5 subtype. The new strain recPR8-H5N1 contains the HA gene from the Russian HPAIV A/Kurgan/05/2005 (H5N1), the NA and internal genes from A/Puerto Rico/8/34 (H1N1). The strain recPR8-H5N1 demonstrated the antigenic specificity (H5), high proliferation rate in 12 days chicken embryos, and was lethal for the embryos in 36 hours. An inactivated emulsified vaccine based on the strain recPR8-H5N1 elicited high antibody titers and protected 6-week-old chickens from lethal challenge with the HPAIV A/Kurgan/05/2005 (H5N1) on day 21 after single immunization. Infection of non-vaccinated birds with the strain recPR8-H5N1 did not cause any pathology, and the virus was not detected using PCR in blood and cloacal swabs on day 7 p.i. Specific weak seroconversion caused by infection with the strain recPR8-H5N1 was detected on day 14 p.i. As a result, a new influenza virus strain was obtained with modified properties.
Assuntos
Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Vírus Reordenados/genética , Genética Reversa , Animais , Antígenos Virais/imunologia , Embrião de Galinha , Galinhas/virologia , Engenharia Genética/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Vírus Reordenados/imunologia , Vacinas de Produtos Inativados , Replicação ViralRESUMO
INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 has created serious health problems worldwide. The most effective way to prevent the occurrence of new epidemic outbreaks is vaccination. One of the modern and effective approaches to vaccine development is the use of virus-like particles (VLPs). The aim of the study is to develop a technology for production of VLP based on recombinant SARS-CoV-2 proteins (E, M, N and S) in insect cells. MATERIALS AND METHODS: Synthetic genes encoding coronavirus proteins E, M, N and S were used. VLP with various surface proteins of strains similar to the Wuhan virus, Delta, Alpha and Omicron were developed and cloned into the pFastBac plasmid. The proteins were synthesized in the baculovirus expression system and assembled into VLP in the portable Trichoplusia ni cell. The presence of insertion in the baculovirus genome was determined by PCR. ELISA and immunoblotting were used to study the antigenic activity of VLP. VLP purification was performed by ultracentrifugation using 20% sucrose. Morphology was assessed using electron microscopy and dynamic light scattering. RESULTS: VLPs consisting of recombinant SARS-CoV-2 proteins (S, M, E and N) were obtained and characterized. The specific binding of antigenic determinants in synthesized VLPs with antibodies to SARS-CoV-2 proteins has been demonstrated. The immunogenic properties of VLPs have been studied. CONCLUSION: The production and purification of recombinant VLPs consisting of full-length SARS-CoV-2 proteins with a universal set of surface antigens have been developed and optimized. Self-assembling particles that mimic the coronavirus virion induce a specific immune response against SARS-CoV-2.
Assuntos
Baculoviridae , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus , Animais , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , COVID-19/virologia , COVID-19/imunologia , Baculoviridae/genética , Baculoviridae/metabolismo , Vacinas contra COVID-19/imunologia , Anticorpos Antivirais/imunologia , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , FosfoproteínasRESUMO
INTRODUCTION: Currently, low molecular-weight compounds are being developed as potential inhibitors of CoVs replication, targeting various stages of the replication cycle, such as major protease inhibitors and nucleoside analogs. Viroporins can be alternative protein targets. The aim of this study is to identify antiviral properties of histidine derivatives with cage substituents in relation to pandemic strain SARS-CoV-2 in vitro. MATERIALS AND METHODS: Combination of histidine with aminoadamantane and boron cluster anion [B10H10]2 (compounds IIV) was carried out by classical peptide synthesis. Compound were identified by modern physicochemical methods. Antiviral properties were studied in vitro on a monolayer of Vero E6 cells infected with SARS-CoV-2 (alpha strain) with simultaneous administration of compounds and virus. RESULTS: Derivatives of amino acid histidine with carbocycles and boron cluster were synthesized and their antiviral activity against SARS-CoV-2 was studied in vitro. Histidine derivatives with carbocycles and [B10H10]2 have the ability to suppress virus replication. The solubility of substances in aqueous media can be increased due to formation of hydrochloride or sodium salt. DISCUSSION: 2HCl*H-His-Rim (I) showed some effect of suppressing replication of SARS-CoV-2 at a viral load of 100 doses and concentration 31.2 g/ml. This is explained by the weakly basic properties of compound I. CONCLUSION: The presented synthetic compounds showed moderate antiviral activity against SARS-CoV-2. The obtained compounds can be used as model structures for creating new direct-acting drugs against modern strains of coronaviruses.
Assuntos
Antivirais , COVID-19 , Animais , Chlorocebus aethiops , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Histidina/farmacologia , Boro/farmacologia , Células Vero , Replicação ViralRESUMO
INTRODUCTION: SARS-CoV-2, a severe acute respiratory illness virus that emerged in China in late 2019, continues to spread rapidly around the world, accumulating mutations and thus causing serious concern. Five virus variants of concern are currently known: Alpha (lineage B.1.1.7), Beta (lineage B.1.351), Gamma (lineage P.1), Delta (lineage B.1.617.2), and Omicron (lineage B.1.1.529). In this study, we conducted a molecular epidemiological analysis of the most prevalent genovariants in Moscow and the region. The aim of the study is to estimate the distribution of various variants of SARS-CoV-2 in Moscow city and the Moscow Region. MATERIALS AND METHODS: 227 SARS-CoV-2 sequences were used for analysis. Isolation of the SARS-CoV-2 virus was performed on Vero E6 cell culture. Sequencing was performed by the Sanger method. Bioinformatic analysis was carried out using software packages: MAFFT, IQ-TREE v1.6.12, jModelTest 2.1.7, Nextstrain, Auspice v2.34. RESULTS: As a result of phylogenetic analysis, we have identified the main variants of the virus circulating in Russia that have been of concern throughout the existence of the pandemic, namely: variant B.1.1.7, which accounted for 30% (9/30), AY.122, which accounted for 16.7% (5/30), BA.1.1 with 20% (6/30) and B.1.1 with 33.3% (10/30). When examining Moscow samples for the presence of mutations in SARS-CoV-2 structural proteins of different genovariants, a significant percentage of the most common substitutions was recorded: S protein D614G (86.7%), P681H/R (63.3%), E protein T9I (20.0%); M protein I82T (30.0%), D3G (20.0%), Q19E (20.0%) and finally N protein R203K/M (90.0%), G204R/P (73.3 %). CONCLUSION: The study of the frequency and impact of mutations, as well as the analysis of the predominant variants of the virus are important for the development and improvement of vaccines for the prevention of COVID-19. Therefore, ongoing molecular epidemiological studies are needed, as these data provide important information about changes in the genome of circulating SARS-CoV-2 variants.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Moscou/epidemiologia , COVID-19/epidemiologia , FilogeniaRESUMO
INTRODUCTION: Rotavirus infection is one of the main concerns in infectious pathology in humans, mammals and birds. Newborn piglets or rodents are usually being used as a laboratory model for the evaluation of immunogenicity and efficacy for all types of vaccines against rotavirus A (RVA), and the use of ELISA for the detection of virus-specific antibodies of specific isotype is an essential step of this evaluation. OBJECTIVE: Development of indirect solid-phase ELISA with VP2/VP6 rotavirus VLP as an antigen to detect and assess the distribution of RVA-specific IgG, IgM and IgA in the immune response to rotavirus A. MATERIALS AND METHODS: VP2/VP6 rotavirus VLP production and purification, electron microscopy, PAGE, immunoblotting, ELISA, virus neutralization assay. RESULTS: The study presents the results of development of a recombinant baculovirus with RVA genes VP2-eGFP/VP6, assessment of its infectious activity and using it for VLP production. The morphology of the VP2/VP6 rotavirus VLPs was assessed, the structural composition was determined, and the high antigenic activity of the VLP was established. VLP-based ELISA assay was developed and here we report results for RVA-specific antibody detection in sera of different animals. CONCLUSION: The developed ELISA based on VP2/VP6 rotavirus VLP as a universal antigen makes it possible to detect separately IgG, IgM and IgA antibodies to rotavirus A, outlining its scientific and practical importance for the evaluation of immunogenicity and efficacy of traditional vaccines against rotavirus A and those under development.
Assuntos
Rotavirus , Humanos , Recém-Nascido , Animais , Suínos , Rotavirus/genética , Proteínas Recombinantes , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina A , Imunidade , Imunoglobulina M , Antígenos Virais/genética , MamíferosRESUMO
INTRODUCTION: In Russia, almost half of the cases of acute intestinal infections of established etiology in 2022 are due to rotavirus infection (RVI). There is no specific treatment for rotavirus gastroenteritis. There is a need to develop modern, effective and safe vaccines to combat rotavirus infection that are not capable of multiplying (replicating) in the body of the vaccinated person. A promising approach is to create vaccines based on virus-like particles (VLPs). OBJECTIVE: Study of the safety and immunogenicity of a vaccine against rotavirus infection based on virus-like particles of human rotavirus A in newborn minipigs with multiple intramuscular administration. MATERIALS AND METHODS: Newborn minipigs were used as an animal model in this study. The safety of the tested vaccine was assessed based on thermometry data, clinical examination, body weight gain, clinical and biochemical blood parameters, as well as necropsy and histological examination. When studying the immunogenic properties of the Gam-VLP-rota vaccine in doses of 30 and 120 µg, the cellular, humoral and secretory immune response was studied. RESULTS: The results of assessing the general condition of animals during the immunization period, data from clinical, laboratory and pathomorphological studies indicate the safety of the vaccine against human rotavirus infection based on VLP (Gam-VLP-rota) when administered three times intramuscularly. Good local tolerance of the tested vaccine was demonstrated. The results of the assessment of humoral immunity indicate the formation of a stable immune response after three-time immunization with Gam-VLP-rota, stimulation of the production of antigen-specific IgG antibodies and their functional activity to neutralize human rotavirus A. It was shown that following the triple immunization with the minimum tested concentration of 30 µg/dose, animals developed a cell-mediated immune response. The results of the IgA titer in blood serum and intestinal lavages indicate the formation of both a systemic immunological response and the formation of specific secretory immunity to human rotavirus A. CONCLUSION: Thus, three-time intramuscular immunization of minipigs with the Gam-VLP-rota vaccine forms stable protective humoral and cellular immunity in experimental animals. Evaluated vaccine is safe and has good local tolerability.
Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Recém-Nascido , Animais , Humanos , Suínos , Infecções por Rotavirus/prevenção & controle , Porco Miniatura , Anticorpos Antivirais , Vacinas contra Rotavirus/efeitos adversosRESUMO
The coronavirus disease (COVID-19) pandemic has brought into sharp relief the threat posed by coronaviruses and laid the foundation for a fundamental analysis of this viral family, as well as a search for effective anti-COVID drugs. Work is underway to update existent vaccines against COVID-19, and screening for low-molecular-weight anti-COVID drug candidates for outpatient medicine continues. The opportunities and ways to accelerate the development of antiviral drugs against other pathogens are being discussed in the context of preparing for the next pandemic. In 2012-2015, Tsyshkova et al. synthesized a group of water-soluble low-molecular-weight compounds exhibiting an antiviral activity, whose chemical structure was similar to that of arbidol. Among those, there were a number of water-soluble compounds based on 5-methoxyindole-3-carboxylic acid aminoalkyl esters. Only one member of this rather extensive group of compounds, dihydrochloride of 6-bromo-5-methoxy-1-methyl-2-(1-piperidinomethyl)-3-(2-diethylaminoethoxy) carbonylindole, exhibited a reliable antiviral effect against SARS-CoV-2 in vitro. At a concentration of 52.0 µM, this compound completely inhibited the replication of the SARS-CoV-2 virus with an infectious activity of 106 TCID50/mL. The concentration curves of the analyzed compound indicate the specificity of its action. Interferon-inducing activity, as well as suppression of syncytium formation induced by the spike protein (S-glycoprotein) of SARS-CoV-2 by 89%, were also revealed. In view of its synthetic accessibility - high activity (IC50 = 1.06 µg/mL) and high selectivity index (SI = 78.6) - this compound appears to meets the requirements for the development of antiviral drugs for COVID-19 prevention and treatment.
RESUMO
The incidence of contamination of cell strains used in biological and virological studies and of fetal calf sera (FCS) manufactured by Russian and foreign companies used for cell culturing with noncytocidal bovine viral diarrhea virus (BVDV; Pestivirus, Flaviviridae) was analyzed. The virus was detected by reverse transcription PCR and indirect immunofluorescence with monoclonal antibodies to BVDV virion envelope glycoprotein in 25% of 117 cell strains and 45% of 35 tested FCS lots. The virus multiplied and persisted in a wide spectrum of human cell strains and in monkey, swine, sheep, rabbit, dog, cat, and other animal cells. The levels of BVDV genome RNA in contaminated cell cultures reached 10(2)-10(3) g-eq/cell and in serum samples 10(3)-10(7) g-eq/ml. These facts necessitate testing of cells and FCS for BVDV reproduced in cells without signs of infection detectable by light microscopy. The molecular mechanisms of long-term virus persistence in cells without manifestation of cell destruction are unknown.
Assuntos
Vírus da Diarreia Viral Bovina/crescimento & desenvolvimento , Animais , Anticorpos Monoclonais/imunologia , Gatos , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Cães , Técnica Indireta de Fluorescência para Anticorpo , Haplorrinos , Humanos , RNA Viral/genética , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Suínos , Proteínas do Envelope Viral/imunologiaRESUMO
Different cell tissue cultures and commercial fetal calf sera (FTS) used in biological and virological research were screened for the bovine viral diarrhea virus (BVDV, Pestivirus genus, Flaviviridae family) and mycoplasma contamination. BVDV was detected using RT-PCR and Indirect immunofluorescence (with monoclonal antibodies) methods in 33% cases of the studied cell lines and in > 60% cases of FCS. BVDV was shown to present and reproduce in high spectra of human cell lines, as well as in monkey, pig, rabbit, goat, dog, and cat cells at high levels (up to 100-1000 genome-equivalent copies per cell) and reached up to 10(3)-10(7) genome-equivalent copies per serum ml. The molecular mechanisms of the long virus persistence without definite signs of destruction should be studied.
Assuntos
Linhagem Celular/virologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Mycoplasma/isolamento & purificação , RNA Viral/isolamento & purificação , Animais , Bovinos , Técnicas de Cultura de Células , Sangue Fetal/virologia , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Soro/virologiaRESUMO
Results of monitoring of different subtypes of avian leukosis virus (ALV) from commercial poultry farms in 14 regions of Russian Federation were discussed. Only three regions were found to be negative. ALV was detected in other 11 regions in 46-64% cases (for different regions). The phylogenetic analysis of the genomes for the 12 field isolates of ALV was carried out in different regions of Russian Federation. The isolates belong to different subtypes of the virus and form two large groups. The genomic differences between Russian and foreign isolates within each group range from 5% to 10%.
Assuntos
Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/isolamento & purificação , Leucose Aviária/virologia , Aves Domésticas/virologia , Animais , Leucose Aviária/epidemiologia , Vírus da Leucose Aviária/classificação , Genótipo , Filogeografia , Aves Domésticas/genética , Federação RussaRESUMO
The continuous emergence of new pathogens and the evolution of microbial drug resistance make it absolutely necessary to develop innovative, effective vaccination strategies. Use of nasal vaccination can increase convenience, safety, cause both local and systemic immune reactions. Intranasal administration nevertheless has a number of shortcomings that can be overcome by using the latest achievements of pharmaceutical science. One of the aspects of such solution may be the use of systems for the production of intranasal vaccines in situ polymer compositions that provide a directed sol-gel transition controlled by the physiological conditions of the nasal cavity. At the same time, the gelation of the administered dose in contact with the nasal mucosa involves prolonged exposure of the drug at the injection site, greater mucoadhesion, counteraction to mucociliary clearance, modified and more complete release. A number of both foreign and domestic manufacturers produces polymers such as chitosan, gums, polyoxyethylene and polyoxypropylene block copolymers (poloxamers, proxanols), carbomers. For effective pharmaceutical development of new intranasal IBD delivery systems corresponding to the QbD concept, not only the knowledge of the range of excipients is necessary, but also simple, accessible, and reproducible methods for determining indicators that define the critical parameters of such delivery systems. In accordance with the conducted scientific search, the main indicators of standardization of in situ intranasal systems were identified: temperature and time of gel formation, gel strength, rheological characteristics, mucoadhesion, release, nasal mucociliary clearance time.
Assuntos
Sistemas de Liberação de Medicamentos , Mucosa Nasal , Administração Intranasal , Géis/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Poloxâmero/farmacologiaRESUMO
The review is concerned with molecular diagnostic tools for influenza A viruses. Test systems based on PCR, real-time PCR, IEA, sequenation, and microchip-based methods are discussed as applied at this Institute for comprehensive monitoring influenza A viruses.
Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Técnicas de Diagnóstico Molecular/métodos , Sistemas Computacionais , Diagnóstico por Computador , Ecossistema , Monitoramento Ambiental , Monitoramento Epidemiológico , Vetores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/genética , Vacinas contra Influenza/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Testes de Sensibilidade Microbiana , RNA Viral/genética , Federação Russa/epidemiologia , Análise de Sequência de RNARESUMO
The review presents the state-of-the-art on the problem of diagnosis of prion diseases (PD) in humans and animals with a brief description of their etiology and pathogenesis. We pointed out that understanding the nature of the etio logical agent of PD determined their zoonotic potential and led to the development of highly specific immunological diagnostic methods aimed at identifying the infectious isoform of prion protein (PrPd) as the only marker of the disease. In this regard, we briefly summarize the results of studies, including our own, concerning the conversion of normal prion protein molecules (PrPc) to PrPd, the production of monoclonal antibodies and their application as immunodiagnostic reagents for the post-mortem detection of PrPd in various formats of immunoassay. We also emphasize the issues related to the development of methods for ante mortem diagnostics of PD. In this regard, a method for amplifying amino acid sequences using quacking-induced conversion of PrPc to PrPd in real time (RTQuIC) described in details. The results of recent studies on the assessment of the sensitivity, specificity and reproducibility of this method, carried out in various laboratories around the world, are presented. The data obtained indicate that RT-QuIC is currently the most promising laboratory assay for detecting PrPd in biological material at the preclinical stage of the disease. The significant contribution of US scientists to the introduction of this method into clinical practice on the model of diagnosis of chronic wasting disease of wild Cervidae (CWD) is noted. The possible further spread of CWD in the population of moose and deer in the territories bordering with Russia, as well as the established fact of alimentary transmission of CWD to macaques, indicate the threat of the appearance of PD in our country. In conclusion, the importance of developing new hypersensitive and/or selective components of known methods for PrPd identification from the point of view of assessing the risks of creating artificial infectious prion proteins in vivo or in vitro, primarily new pathogenic isoforms ("strains") and synthetic prions, was outlined.
Assuntos
Autopsia , Doenças Priônicas/diagnóstico , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Sequência de Aminoácidos/genética , Animais , Cervos/genética , Humanos , Doenças Priônicas/genética , Doenças Priônicas/patologia , Proteínas Priônicas/isolamento & purificação , Federação Russa , Doença de Emaciação Crônica/patologiaRESUMO
INTRODUCTION: Variants of influenza virus A/H7 have the same high pandemic potential as A/H5. However, the information about the antigenic structure of H7 hemagglutinin (ÐÐ) is considerably inferior in quantitative terms to similar data for H5 ÐÐ.The aims of the study were development and characterization of the monoclonal antibodies (MAbs) panel for HA subtype H7 of the influenza A virus. MATERIAL AND METHODS: Viruses were accumulated in 10-day-old chicken embryos. Purification and concentration of the virus, determination of protein concentration, preparation of MAbs and ascitic fluids, hemagglutination and hemagglutination inhibition (HI) tests, assessment of antibodies' activity in indirect enzyme-linked immunosorbent assay (ELISA), as well as determination of MAbs isotypes and neutralization reaction (NR) were carried out by standard methods. RESULTS: The obtained MAbs to Ð/mallard/Netherlands/12/2000 (H7N3) strain were studied in HI test with a set of strains of different years of isolation belonging to different evolutionary groups. MAbs had a reduced reactivity compared to the immunogen-virus for all the studied strains. Cross-interaction of MAbs 9E11 and 9G12 in HI test with influenza A/H15 virus has been observed. DISCUSSION: Influenza A agent with H7 HA variant could serve as a potential cause of a future pandemic. Development of the MAbs panel for subtype H7 HA is an urgent task for both veterinary medicine and public health. CONCLUSION: The obtained MAbs can be used not only for epitope mapping of the H7 HA molecule (currently insufficiently studied) and as reagents for diagnostic assays, but also for determining common («universal¼) epitopes in HA of different strains of this subtype.