Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Rev Neurosci ; 20(2): 71-82, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559395

RESUMO

The circadian clock is an endogenous, time-tracking system that directs multiple metabolic and physiological functions required for homeostasis. The master or central clock located within the suprachiasmatic nucleus in the hypothalamus governs peripheral clocks present in all systemic tissues, contributing to their alignment and ultimately to temporal coordination of physiology. Accumulating evidence reveals the presence of additional clocks in the brain and suggests the possibility that circadian circuits may feed back to these from the periphery. Here, we highlight recent advances in the communications between clocks and discuss how they relate to circadian physiology and metabolism.


Assuntos
Química Encefálica/fisiologia , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Redes e Vias Metabólicas/fisiologia , Animais , Relógios Biológicos , Ingestão de Alimentos , Humanos
2.
Proc Natl Acad Sci U S A ; 116(50): 25250-25259, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757851

RESUMO

Binge drinking and chronic exposure to ethanol contribute to alcoholic liver diseases (ALDs). A potential link between ALDs and circadian disruption has been observed, though how different patterns of alcohol consumption differentially impact hepatic circadian metabolism remains virtually unexplored. Using acute versus chronic ethanol feeding, we reveal differential reprogramming of the circadian transcriptome in the liver. Specifically, rewiring of diurnal SREBP transcriptional pathway leads to distinct hepatic signatures in acetyl-CoA metabolism that are translated into the subcellular patterns of protein acetylation. Thus, distinct drinking patterns of alcohol dictate differential adaptation of hepatic circadian metabolism.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Ritmo Circadiano , Etanol/metabolismo , Fígado/metabolismo , Consumo de Bebidas Alcoólicas/genética , Animais , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Transcriptoma
3.
Cardiovasc Res ; 119(4): 982-997, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626303

RESUMO

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of mortality worldwide, requiring novel therapeutic and lifestyle interventions. Metabolic alterations and energy production deficit are hallmarks and thereby promising therapeutic targets for this complex clinical syndrome. We aim to study the molecular mechanisms and effects on cardiac function in rodents with HFrEF of a designer diet in which free essential amino acids-in specifically designed percentages-substituted for protein. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricle (LV) pressure overload or sham surgery. Whole-body glucose homeostasis was studied with glucose tolerance test, while myocardial dysfunction and fibrosis were measured with echocardiogram and histological analysis. Mitochondrial bioenergetics and morphology were investigated with oxygen consumption rate measurement and electron microscopy evaluation. Circulating and cardiac non-targeted metabolite profiles were analyzed by ultrahigh performance liquid chromatography-tandem mass spectroscopy, while RNA-sequencing was used to identify signalling pathways mainly affected. The amino acid-substituted diet shows remarkable preventive and therapeutic effects. This dietary approach corrects the whole-body glucose metabolism and restores the unbalanced metabolic substrate usage-by improving mitochondrial fuel oxidation-in the failing heart. In particular, biochemical, molecular, and genetic approaches suggest that renormalization of branched-chain amino acid oxidation in cardiac tissue, which is suppressed in HFrEF, plays a relevant role. Beyond the changes of systemic metabolism, cell-autonomous processes may explain at least in part the diet's cardioprotective impact. CONCLUSION: Collectively, these results suggest that manipulation of dietary amino acids, and especially essential amino acids, is a potential adjuvant therapeutic strategy to treat systolic dysfunction and HFrEF in humans.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Camundongos , Animais , Miocárdio/metabolismo , Volume Sistólico , Aminoácidos Essenciais/metabolismo , Dieta
4.
Free Radic Biol Med ; 170: 50-58, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33450380

RESUMO

Circadian rhythms play a central role in physiological and metabolic processes. This is mostly achieved through rhythmic regulation of myriad genes via dynamic epigenome changes. Accumulating evidence indicates that oxidative stress and redox balance are under circadian control and feedback on the clock system. Circadian perturbations induce oxidative stress accumulation and disturb redox balance. Along with these changes, epigenomic landscape changes are a remarkable hallmark of clock disruption. This review aims to summarize evidence supporting the link between the circadian clock and redox metabolism, focusing on possible connections through epigenetic mechanisms.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Relógios Circadianos/genética , Ritmo Circadiano/genética , Epigênese Genética , Epigenômica , Oxirredução
5.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32433754

RESUMO

Circadian rhythms govern physiology and metabolism, leading to controlled homeostasis. We discuss the impact of circadian rhythms on society and the challenges for the imminent future of personalized medicine.


Assuntos
Ritmo Circadiano , Medicina de Precisão , Relógios Circadianos , Meio Ambiente , Humanos , Preparações Farmacêuticas , Fatores de Tempo
6.
Sci Rep ; 10(1): 12915, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737396

RESUMO

Metabolic syndrome has increased at a worrisome level. Lifestyle changes are not sufficient to prevent and improve the adverse effects of obesity, thus novel interventions are necessary. The aim of this study was to investigate the use and metabolic outcomes of a non-pharmacological intervention in a high-fat diet (HFD) fed mouse model, capable of recapitulating key aspects of metabolic syndrome. We show that Policaptil Gel Retard has remarkable, beneficial effects on metabolic dysfunction caused by consumption of HFD. We describe the mechanism by which such effects are obtained, highlighting the fact that the amelioration of metabolic function observed upon Policaptil Gel Retard administration is profound and of systemic nature, despite being originated by sequestering, therefore non-pharmacological events elicited in the gut lumen.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/microbiologia , Síndrome Metabólica/terapia , Camundongos
7.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328229

RESUMO

Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.


Assuntos
Adenosil-Homocisteinase , Montagem e Desmontagem da Cromatina , Relógios Circadianos , Metionina , Fatores de Transcrição ARNTL/genética , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Proteínas CLOCK , Cromatina , Ritmo Circadiano/genética , Metionina/metabolismo , Camundongos , S-Adenosil-Homocisteína/metabolismo
9.
Oncoimmunology ; 6(7): e1333215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811977

RESUMO

PTX3 is a component of the humoral arm of innate immunity and an extrinsic oncosuppressor gene taming tumor-promoting inflammation. Here, we show that two enhancers differently regulate PTX3 expression: enhancer 1, located 230 kb upstream of PTX3 promoter, mediated the action of inflammatory transcription factors; and enhancer 2, encompassing PTX3 second exon, was implicated in pre-initiation complex assembly. Polycomb repressive complex 2 silenced these regulatory elements and the promoter in basal condition. Enhancer 1 was epigenetically inactivated in early colorectal cancer (CRC) stages, while the promoter and enhancer 2 showed increasingly DNA methylation during CRC progression from adenomas to stage II and III CRC. Inhibition of DNA methylation rescued PTX3 expression in CRC. Finally, enhancer 1 acquired the binding of STAT3 in stage I CRC, and inhibition of STAT3 phosphorylation restored PTX3 activity and decreased enhancer 1 methylation. Thus, the expression of PTX3 is under the control of two enhancers, which emerge as important fine regulators of PTX3 expression in inflammation and cancer.

10.
J Renin Angiotensin Aldosterone Syst ; 12(4): 469-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21628356

RESUMO

INTRODUCTION: The recent discovery of a specific receptor for renin/prorenin (PRR) has added new interest to the potential pharmacological actions of aliskiren, the first direct renin inhibitor. MATERIALS AND METHODS: In the present study, to gain new insights into the pharmacological properties of aliskiren, we investigated the effect of aliskiren on PRR expression and activity in cultured human smooth muscle cells (HSMCs). RESULTS: Co-incubation of HSMCs with angiotensinogen (ANG) (1.5 × 10(-7)M) and prorenin (10(-8)-10(-7)M) resulted in an efficient production (within 4h) of angiotensin I, almost completely inhibited by 10(-5)M aliskiren (-86.0 ± 14.0%). In HSMCs stimulated with both ANG and prorenin, a 24h incubation with aliskiren (10(-6)-10(-5)M) resulted in a concentration-dependent reduction of PRR mRNA levels (IC(50) 4.6 × 10(-6)M). The cell surface expression of PRR determined by flow cytometry analysis was also reduced after incubation with aliskiren in a concentration-dependent manner. The lower levels of PRR were associated with a reduced expression of TGF-ß, PAI-1 and type I collagen mRNA. CONCLUSIONS: These results suggest a direct pharmacological action of aliskiren on PRR expression and its signalling pathway in HSMCs. This reported action of aliskiren may reveal a new scenario of the pharmacological properties of aliskiren.


Assuntos
Amidas/farmacologia , Aorta/citologia , Fumaratos/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Receptores de Superfície Celular/metabolismo , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Angiotensinogênio/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligação Proteica/efeitos dos fármacos , Receptores de Superfície Celular/genética , Renina/farmacologia , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA