Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(9): 1128-1135, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500959

RESUMO

The niobium oxide polymorph T-Nb2O5 has been extensively investigated in its bulk form especially for applications in fast-charging batteries and electrochemical (pseudo)capacitors. Its crystal structure, which has two-dimensional (2D) layers with very low steric hindrance, allows for fast Li-ion migration. However, since its discovery in 1941, the growth of single-crystalline thin films and its electronic applications have not yet been realized, probably due to its large orthorhombic unit cell along with the existence of many polymorphs. Here we demonstrate the epitaxial growth of single-crystalline T-Nb2O5 thin films, critically with the ionic transport channels oriented perpendicular to the film's surface. These vertical 2D channels enable fast Li-ion migration, which we show gives rise to a colossal insulator-metal transition, where the resistivity drops by 11 orders of magnitude due to the population of the initially empty Nb 4d0 states by electrons. Moreover, we reveal multiple unexplored phase transitions with distinct crystal and electronic structures over a wide range of Li-ion concentrations by comprehensive in situ experiments and theoretical calculations, which allow for the reversible and repeatable manipulation of these phases and their distinct electronic properties. This work paves the way for the exploration of novel thin films with ionic channels and their potential applications.

2.
Nature ; 559(7715): 556-563, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046074

RESUMO

The maximum power output and minimum charging time of a lithium-ion battery depend on both ionic and electronic transport. Ionic diffusion within the electrochemically active particles generally represents a fundamental limitation to the rate at which a battery can be charged and discharged. To compensate for the relatively slow solid-state ionic diffusion and to enable high power and rapid charging, the active particles are frequently reduced to nanometre dimensions, to the detriment of volumetric packing density, cost, stability and sustainability. As an alternative to nanoscaling, here we show that two complex niobium tungsten oxides-Nb16W5O55 and Nb18W16O93, which adopt crystallographic shear and bronze-like structures, respectively-can intercalate large quantities of lithium at high rates, even when the sizes of the niobium tungsten oxide particles are of the order of micrometres. Measurements of lithium-ion diffusion coefficients in both structures reveal room-temperature values that are several orders of magnitude higher than those in typical electrode materials such as Li4Ti5O12 and LiMn2O4. Multielectron redox, buffered volume expansion, topologically frustrated niobium/tungsten polyhedral arrangements and rapid solid-state lithium transport lead to extremely high volumetric capacities and rate performance. Unconventional materials and mechanisms that enable lithiation of micrometre-sized particles in minutes have implications for high-power applications, fast-charging devices, all-solid-state energy storage systems, electrode design and material discovery.

3.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38363076

RESUMO

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

4.
J Am Chem Soc ; 145(9): 4928-4933, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36811389

RESUMO

Noncentrosymmetric (NCS) structures are of particular interest owing to their symmetry-dependent physical properties, e.g., pyroelectricity, ferroelectricity, piezoelectricity, and nonlinear optical (NLO) behavior. Among them, chiral materials exhibit polarization rotation and host topological properties. Borates often contribute to NCS and chiral structures via their triangular [BO3] and tetrahedral [BO4] units and their numerous superstructure motifs. However, no chiral compound with the linear [BO2] unit has been reported to date. Herein, an NCS and chiral mixed-alkali-metal borate, NaRb6(B4O5(OH)4)3(BO2), with a linear BO2- unit in the structure was synthesized and characterized. The structure features a combination of three types of basic building units (BBUs), [BO2], [BO3], and [BO4] with sp-, sp2-, and sp3-hybridization of boron atoms, respectively. It crystallizes in the trigonal space group R32 (No. 155), one of the 65 Sohncke space groups. Two enantiomers of NaRb6(B4O5(OH)4)3(BO2) were found, and their crystallographic relationships are discussed. These results not only expand the small family of NCS structures with the rare linear BO2- unit but also prompt recognition to the fact that NLO materials have generally overlooked the existence of two enantiomers in achiral Sohncke space groups.

5.
Inorg Chem ; 61(26): 10234-10241, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35736661

RESUMO

The strength and sign of superexchange interactions are often predicted on the basis of the bond angles between magnetic ions, but complications may arise in situations with a nontrivial arrangement of the magnetic orbitals. We report on a novel molecular tetramer compound [Cu(H2O)dmbpy]2[V2O2F8] (dmbpy = 4,4'-dimethyl-2,2'-bipyridyl) that is composed of triangular "CuV2" fragments and displays a spin gap behavior. By combining first-principles calculations and electronic models, we reveal that superexchange Cu-V interactions carry drastically different coupling strengths along two Cu-F-V pathways with comparable bond angles in the triangular "CuV2" fragment. Counterintuitively, their strong disparity is found to originate from the restricted symmetry of the half-filled Cu dx2-y2 orbital stabilized by the crystal field, leading to one dominating antiferromagnetic Cu-V coupling in each fragment. We revisit the magnetic properties of the reported spin-gapped chain compound [enH2]Cu(H2O)2[V2O2F8] (enH2 = ethylene diammonium) containing similar triangular "CuV2" fragments, and the magnetic behavior of the molecular tetramer and the chain compounds is rationalized as that of weakly coupled spin dimers and spin trimers, respectively. This work demonstrates that fundamentally different magnetic couplings can be observed between magnetic ions with similar bond angles in a single spin motif, thus providing a strategy to introduce various exchange interactions combined with low dimensionality in heterometallic Cu(II)-V(IV) compounds.

6.
J Am Chem Soc ; 143(45): 18907-18916, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34729984

RESUMO

Elpasolite- and cryolite-type oxyfluorides can be regarded as superstructures of perovskite and exhibit structural diversity. While maintaining a similar structural topology with the prototype structures, changes in the size, electronegativity, and charge of cation and/or anion inevitably lead to structural evolution. Therefore, the nominal one-to-one relation suggested by a doubled formula of perovskite does not guarantee a simple 2-fold superstructure for many cases. Herein, the commensurately modulated perovskite-like K3TiOF5 was refined at 100 K from single-crystal X-ray diffraction data by using a pseudotetragonal subcell with lattice parameters of a = b = 6.066(2) Å and c = 8.628(2) Å. The length of the modulation vector was refined to 0.3a* + 0.1b* + 0.25c*. In the commensurate supercell of K3TiOF5, the B-site Ti4+ and K+ cations in [TiOF5]3- and [KOF5]6- octahedral units were found to be significantly displaced from the average atomic positions refined in the subcell. The displacements of the K+ cations are ±0.76 Å, and those for the Ti4+ cations are approximately ±0.13 Å. One- and two-dimensional solid-state 19F NMR measurements revealed two tightly clustered groups of resonances in a ratio of ca. 4:1, assigned to equatorial and axial fluorine, respectively, consistent with local [TiOF5]3- units. S/TEM results confirmed the average structure. Electronic structure calculations of the idealized I4mm subcell indicate the instability to a modulated structure arises from soft optical modes that is controlled by the octahedrally coordinated B-site potassium ions in the cryolite-type structure.

7.
Inorg Chem ; 60(7): 4463-4474, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667068

RESUMO

Fluoridation of HfO2 was carried out with three commonly used solid-state fluoridation agents: PVDF, PTFE, and NH4HF2. Clear and reproducible differences are observed in the reaction products of the fluoropolymer reagents and NH4HF2 with the latter more readily reacting in air. Strong evidence of distinct, previously unreported hafnium oxyfluoride phases is produced by both reactions, and efforts to isolate them were successful for the air-NH4HF2 reaction. Synchrotron XRD, 19F NMR, and elemental analysis were employed to characterize the phase-pure material which appears to be analogous to known Zr-O-F phases with anion-deficient α-UO3 structures such as Zr7O9F10. Comparison with the hydrolysis of ß-HfF4 under identical conditions depicts that the NH4HF2 route produces the oxyfluoride with greater selectivity and at lower temperatures. Thermodynamic calculations were employed to explain this result. Potential reaction pathways for the NH4HF2 fluoridation of HfO2 are discussed.

8.
Magn Reson Chem ; 59(9-10): 1077-1088, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081358

RESUMO

Indium and bismuth are technologically important elements, in particular as oxides for optoelectronic applications. 115 In and 209 Bi are both I = 9/2 nuclei with high natural abundances and moderately high frequencies but large nuclear electric quadrupole moments. Leveraging the quadrupolar interaction as a measure of local symmetry and polyhedral distortions for these nuclei could provide powerful insights on a range of applied materials. However, the absence of reported nuclear magnetic resonance (NMR) parameters on these nuclei, particularly in oxides, hinders their use by the broader materials community. In this contribution, solid-state 115 In and 209 Bi NMR of three recently discovered quaternary bismuth or indium oxides are reported, supported by density functional theory calculations, numerical simulations, diffraction and additional multinuclear (27 Al, 69,71 Ga, and 121 Sb) solid-state NMR measurements. The compounds LiIn2 SbO6 , BiAlTeO6 , and BiGaTeO6 are measured without special equipment at 9.4 T, demonstrating that wideline techniques such as the QCPMG pulse sequence and frequency-stepped acquisition can enable straightforward extraction of quadrupolar tensor information in I = 9/2 115 In and 209 Bi even in sites with large quadrupolar coupling constants. Relationships are described between the NMR observables and local site symmetry. These are amongst the first reports of the NMR parameters of 115 In, 121 Sb, and 209 Bi in oxides.

9.
J Am Chem Soc ; 142(44): 18924-18935, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095562

RESUMO

MXenes, derived from layered MAX phases, are a class of two-dimensional materials with emerging applications in energy storage, electronics, catalysis, and other fields due to their high surface areas, metallic conductivity, biocompatibility, and attractive optoelectronic properties. MXene properties are heavily influenced by their surface chemistry, but a detailed understanding of the surface functionalization is still lacking. Solid-state nuclear magnetic resonance (NMR) spectroscopy is sensitive to the interfacial chemistry, the phase purity including the presence of amorphous/nanocrystalline phases, and the electronic properties of the MXene and MAX phases. In this work, we systematically study the chemistry of Nb MAX and MXene phases, Nb2AlC, Nb4AlC3, Nb2CTx, and Nb4C3Tx, with their unique electronic and mechanical properties, using solid-state NMR spectroscopy to examine a variety of nuclei (1H, 13C, 19F, 27Al, and 93Nb) with a range of one- and two-dimensional correlation, wide-line, high-sensitivity, high-resolution, and/or relaxation-filtered experiments. Hydroxide and fluoride terminations are identified, found to be intimately mixed, and their chemical shifts are compared with other MXenes. This multinuclear NMR study demonstrates that diffraction alone is insufficient to characterize the phase composition of MAX and MXene samples as numerous amorphous or nanocrystalline phases are identified including NbC, AlO6 species, aluminum nitride or oxycarbide, AlF3·nH2O, Nb metal, and unreacted MAX phase. To the best of our knowledge, this is the first study to examine the transition-metal resonances directly in MXene samples, and the first 93Nb NMR of any MAX phase. The insights from this work are employed to enable the previously elusive assignment of the complex overlapping 47/49Ti NMR spectrum of Ti3AlC2. The results and methodology presented here provide fundamental insights on MAX and MXene phases and can be used to obtain a more complete picture of MAX and MXene chemistry, to prepare realistic structure models for computational screening, and to guide the analysis of property measurements.

10.
J Am Chem Soc ; 142(16): 7555-7566, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233475

RESUMO

Racemates have recently received attention as nonlinear optical and piezoelectric materials. Here, a machine-learning-assisted composition space approach was applied to synthesize the missing M = Ti, Zr members of the Δ,Λ-[Cu(bpy)2(H2O)]2[MF6]2·3H2O (M = Ti, Zr, Hf; bpy = 2,2'-bipyridine) family (space group: Pna21). In each (CuO, MO2)/bpy/HF(aq) (M = Ti, Zr, Hf) system, the polar noncentrosymmetric racemate (M-NCS) forms in competition with a centrosymmetric one-dimensional chain compound (M-CS) based on alternating Cu(bpy)(H2O)22+ and MF62- basic building units (space groups: Ti-CS (Pnma), Zr-CS (P1̅), Hf-CS (P2/n)). Machine learning models were trained on reaction parameters to gain unbiased insight into the underlying statistical trends in each composition space. A human-interpretable decision tree shows that phase selection is driven primarily by the bpy:CuO molar ratio for reactions containing Zr or Hf, and predicts that formation of the Ti-NCS compound requires that the amount of HF present be decreased to raise the pH, which we verified experimentally. Predictive leave-one-metal-out (LOO) models further confirm that behavior in the Ti system is distinct from that of the Zr and Hf systems. The chemical origin of this distinction was probed via fluorine K-edge X-ray absorption spectroscopy. Pre-edge features in the F1s X-ray absorption spectra reveal the strong ligand-to-metal π bonding between Ti(3d - t2g) and F(2p) states that distinguishes the TiF62- anion from the ZrF62- and HfF62- anions.

11.
J Am Chem Soc ; 142(28): 12288-12298, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530621

RESUMO

Complex crystal structures with subtle atomic-scale details are now routinely solved using complementary tools such as X-ray and/or neutron scattering combined with electron diffraction and imaging. Identifying unambiguous atomic models for oxyfluorides, needed for materials design and structure-property control, is often still a considerable challenge despite their advantageous optical responses and applications in energy storage systems. In this work, NMR crystallography and single-crystal X-ray diffraction are combined for the complete structure solution of three new compounds featuring a rare triangular early transition metal oxyfluoride cluster, [Mo3O4F9]5-. After framework identification by single-crystal X-ray diffraction, 1D and 2D solid-state 19F NMR spectroscopy supported by ab initio calculations are used to solve the structures of K5[Mo3O4F9]·3H2O (1), K5[Mo3O4F9]·2H2O (2), and K16[Mo3O4F9]2[TiF6]3·2H2O (3) and to assign the nine distinct fluorine sites in the oxyfluoride clusters. Furthermore, 19F NMR identifies selective fluorine dynamics in K16[Mo3O4F9]2[TiF6]3·2H2O. These dual scattering and spectroscopy methods are used to demonstrate the generality and sensitivity of 19F shielding to small changes in bond length, on the order of 0.01 Å or less, even in the presence of hydrogen bonding, metal-metal bonding, and electrostatic interactions. Starting from the structure models, the nature of chemical bonding in the molybdates is explained by molecular orbital theory and electronic structure calculations. The average Mo-Mo distance of 2.505 Å and diamagnetism in 1, 2, and 3 are attributed to a metal-metal bond order of unity along with a 1a21e4 electronic ground state configuration for the [Mo3O4F9]5- cluster, leading to a rare trimeric spin singlet involving d2 Mo4+ ions. The approach to structure solution and bonding analysis is a powerful strategy for understanding the structures and chemical properties of complex fluorides and oxyfluorides.

12.
J Am Chem Soc ; 141(38): 15121-15134, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448601

RESUMO

Wadsley-Roth crystallographic shear phases form a family of compounds that have attracted attention due to their excellent performance as lithium-ion battery electrodes. The complex crystallographic structure of these materials poses a challenge for first-principles computational modeling and hinders the understanding of their structural, electronic and dynamic properties. In this article, we study three different niobium-tungsten oxide crystallographic shear phases (Nb12WO33, Nb14W3O44, Nb16W5O55) using an enumeration-based approach and first-principles density-functional theory calculations. We report common principles governing the cation disorder, lithium insertion mechanism, and electronic structure of these materials. Tungsten preferentially occupies tetrahedral and block-central sites within the block-type crystal structures, and the local structure of the materials depends on the cation configuration. The lithium insertion proceeds via a three-step mechanism, associated with an anisotropic evolution of the host lattice. Our calculations reveal an important connection between long-range and local structural changes: in the second step of the mechanism, the removal of local structural distortions leads to the contraction of the lattice along specific crystallographic directions, buffering the volume expansion of the material. Niobium-tungsten oxide shear structures host small amounts of localized electrons during initial lithium insertion due to the confining effect of the blocks, but quickly become metallic upon further lithiation. We argue that the combination of local, long-range, and electronic structural evolution over the course of lithiation is beneficial to the performance of these materials as battery electrodes. The mechanistic principles we establish arise from the compound-independent crystallographic shear structure and are therefore likely to apply to niobium-titanium oxide or pure niobium oxide crystallographic shear phases.

13.
J Am Chem Soc ; 141(42): 16706-16725, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31487157

RESUMO

TiNb2O7 is a Wadsley-Roth phase with a crystallographic shear structure and is a promising candidate for high-rate lithium ion energy storage. The fundamental aspects of the lithium insertion mechanism and conduction in TiNb2O7, however, are not well-characterized. Herein, experimental and computational insights are combined to understand the inherent properties of bulk TiNb2O7. The results show an increase in electronic conductivity of seven orders of magnitude upon lithiation and indicate that electrons exhibit both localized and delocalized character, with a maximum Curie constant and Li NMR paramagnetic shift near a composition of Li0.60TiNb2O7. Square-planar or distorted-five-coordinate lithium sites are calculated to invert between thermodynamic minima or transition states. Lithium diffusion in the single-redox region (i.e., x ≤ 3 in LixTiNb2O7) is rapid with low activation barriers from NMR and DLi = 10-11 m2 s-1 at the temperature of the observed T1 minima of 525-650 K for x ≥ 0.75. DFT calculations predict that ionic diffusion, like electronic conduction, is anisotropic with activation barriers for lithium hopping of 100-200 meV down the tunnels but ca. 700-1000 meV across the blocks. Lithium mobility is hindered in the multiredox region (i.e., x > 3 in LixTiNb2O7), related to a transition from interstitial-mediated to vacancy-mediated diffusion. Overall, lithium insertion leads to effective n-type self-doping of TiNb2O7 and high-rate conduction, while ionic motion is eventually hindered at high lithiation. Transition-state searching with beyond Li chemistries (Na+, K+, Mg2+) in TiNb2O7 reveals high diffusion barriers of 1-3 eV, indicating that this structure is specifically suited to Li+ mobility.

14.
J Am Chem Soc ; 140(48): 16685-16696, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30398339

RESUMO

Metallization of initially insulating VO2 via ionic liquid electrolytes, otherwise known as electrolyte gating, has recently been a topic of much interest for possible applications such as Mott transistors and memory devices. It is clear that the metallization takes place electrochemically, and, in particular, there has previously been extensive evidence for the removal of small amounts of oxygen during ionic liquid gating. Hydrogen intercalation has also been proposed, but the source of the hydrogen has remained unclear. In this work, solid-state magic angle spinning NMR spectroscopy (1H, 2H, 17O, and 51V) is used to investigate the thermal metal-insulator transition in VO2, before progressing to catalytically hydrogenated VO2 and electrochemically metallized VO2. In these experiments electrochemical metallization of bulk VO2 particles is shown to be associated with intercalation of hydrogen, the degree of which can be measured with quantitative 1H NMR spectroscopy. Possible sources of the hydrogen are explored, and by using a selectively deuterated ionic liquid, it is revealed that the hydrogenation is due to deprotonation of the ionic liquid; specifically, for the commonly used dialkylimidazolium-based ionic liquids, it is the "carbene" proton that is responsible. Increasing the temperature of the electrochemistry is shown to increase the degree of hydrogenation, forming first a less hydrogenated metallic orthorhombic phase then a more hydrogenated insulating Curie-Weiss paramagnetic orthorhombic phase, both of which were also observed for catalytically hydrogenated VO2. The NMR results are supported by magnetic susceptibility measurements, which corroborate the degree of Pauli and Curie-Weiss paramagnetism. Finally, NMR spectroscopy is used to identify the presence of hydrogen in an electrolyte gated thin film of VO2, suggesting that electrolyte breakdown, proton intercalation, and reactions with decomposition products within the electrolyte should not be ignored when interpreting the electronic and structural changes observed in electrochemical gating experiments.

15.
J Am Chem Soc ; 140(25): 7994-8004, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29916704

RESUMO

Na-ion batteries are promising alternatives to Li-ion systems for electrochemical energy storage because of the higher natural abundance and widespread distribution of Na compared to Li. High capacity anode materials, such as phosphorus, have been explored to realize Na-ion battery technologies that offer comparable performances to their Li-ion counterparts. While P anodes provide unparalleled capacities, the mechanism of sodiation and desodiation is not well-understood, limiting further optimization. Here, we use a combined experimental and theoretical approach to provide molecular-level insight into the (de)sodiation pathways in black P anodes for sodium-ion batteries. A determination of the P binding in these materials was achieved by comparing to structure models created via species swapping, ab initio random structure searching, and a genetic algorithm. During sodiation, analysis of 31P chemical shift anisotropies in NMR data reveals P helices and P at the end of chains as the primary structural components in amorphous Na xP phases. X-ray diffraction data in conjunction with variable field 23Na magic-angle spinning NMR support the formation of a new Na3P crystal structure (predicted using density-functional theory) on sodiation. During desodiation, P helices are re-formed in the amorphous intermediates, albeit with increased disorder, yet emphasizing the pervasive nature of this motif. The pristine material is not re-formed at the end of desodiation and may be linked to the irreversibility observed in the Na-P system.

16.
Inorg Chem ; 56(7): 4002-4010, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319367

RESUMO

The host structure and reversible lithium insertion and extraction of an intercalation compound, TiNb24O62, are described. Neutron diffraction, applied for the first time to TiNb24O62, allowed an accurate refinement of the complex block superstructure, particularly with respect to the oxygen sublattice. Analysis of the transition-metal sites revealed significant cation ordering in the mixed-metal oxide. Electrochemical analysis demonstrated highly reversible lithium intercalation with ca. 190 mA·h·g-1 after 100 cycles (C/10 rate, 3 months). The effect of the potential window on the capacity, polarization, and reversibility was carefully examined; a minimum voltage limit of 1.1-1.2 V is critical for efficient and reversible cycling. The galvanostatic intermittent titration technique revealed three solid-solution regions, with different lithium diffusivities, in addition to the two-phase plateau that was clearly observed in the V versus Q discharge/charge profile. Lithium-ion diffusion decreases by over 3 orders of magnitude from the dilute lithium limit early in the discharge to the lithium-stuffed phase Li37.5(1.0)TiNb24O62. Nevertheless, prior to lithium stuffing, TiNb24O62 possesses intrinsically rapid lithium-ion kinetics, as demonstrated by the high-rate performance in thick films of ca. 10 µm particles when interfaced with a carbon-coated aluminum foil substrate. The TiO2·Nb2O5 phase diagram is examined and electrochemical results are compared to related superstructures of crystallographically sheared blocks of octahedra in the TiO2·Nb2O5 homologous series including the H-Nb2O5 end member.

17.
Inorg Chem ; 56(4): 2153-2158, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28165235

RESUMO

SiAlON ceramics, solid solutions based on the Si3N4 structure, are important, lightweight structural materials with intrinsically high strength, high hardness, and high thermal and chemical stability. Described by the chemical formula ß-Si6-zAlzOzN8-z, from a compositional viewpoint, these materials can be regarded as solid solutions between Si3N4 and Al3O3N. A key aspect of the structural evolution with increasing Al and O (z in the formula) is to understand how these elements are distributed on the ß-Si3N4 framework. The average and local structural evolution of highly phase-pure samples of ß-Si6-zAlzOzN8-z with z = 0.050, 0.075, and 0.125 are studied here, using a combination of X-ray diffraction, NMR studies, and density functional theory calculations. Synchrotron X-ray diffraction establishes sample purity and indicates subtle changes in the average structure with increasing Al content in these compounds. Solid-state magic-angle-spinning 27Al NMR experiments, coupled with detailed ab initio calculations of NMR spectra of Al in different AlOqN4-q tetrahedra (0 ≤ q ≤ 4), reveal a tendency of Al and O to cluster in these materials. Independently, the calculations suggest an energetic preference for Al-O bond formation, instead of a random distribution, in the ß-SiAlON system.

18.
J Am Chem Soc ; 138(28): 8888-99, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27264849

RESUMO

Nanostructuring and nanosizing have been widely employed to increase the rate capability in a variety of energy storage materials. While nanoprocessing is required for many materials, we show here that both the capacity and rate performance of low-temperature bronze-phase TT- and T-polymorphs of Nb2O5 are inherent properties of the bulk crystal structure. Their unique "room-and-pillar" NbO6/NbO7 framework structure provides a stable host for lithium intercalation; bond valence sum mapping exposes the degenerate diffusion pathways in the sites (rooms) surrounding the oxygen pillars of this complex structure. Electrochemical analysis of thick films of micrometer-sized, insulating niobia particles indicates that the capacity of the T-phase, measured over a fixed potential window, is limited only by the Ohmic drop up to at least 60C (12.1 A·g(-1)), while the higher temperature (Wadsley-Roth, crystallographic shear structure) H-phase shows high intercalation capacity (>200 mA·h·g(-1)) but only at moderate rates. High-resolution (6/7)Li solid-state nuclear magnetic resonance (NMR) spectroscopy of T-Nb2O5 revealed two distinct spin reservoirs, a small initial rigid population and a majority-component mobile distribution of lithium. Variable-temperature NMR showed lithium dynamics for the majority lithium characterized by very low activation energies of 58(2)-98(1) meV. The fast rate, high density, good gravimetric capacity, excellent capacity retention, and safety features of bulk, insulating Nb2O5 synthesized in a single step at relatively low temperatures suggest that this material not only is structurally and electronically exceptional but merits consideration for a range of further applications. In addition, the realization of high rate performance without nanostructuring in a complex insulating oxide expands the field for battery material exploration beyond conventional strategies and structural motifs.

19.
Phys Chem Chem Phys ; 18(7): 5099-102, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26818187

RESUMO

(1)H and (19)F NMR experiments have identified and quantified the internal surface terminations of Ti3C2Tx MXene. -F and -OH terminations are shown to be intimately mixed and there are found to be significantly fewer -OH terminations than -F and -O, with the proportions highly dependent on the synthesis method.

20.
Anal Chem ; 87(10): 5132-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25892116

RESUMO

A new means of acquiring overtone mobility spectrometry (OMS) data sets that allows distributions of ions for a prescribed overtone number is described. In this approach, the drift fields applied to specific OMS drift regions are varied to make it possible to select different ions from a specific overtone that is resonant over a range of applied frequencies. This is accomplished by applying different fields for fixed ratios of time while scanning the applied frequency. The ability to eliminate peaks from all but a single overtone region overcomes a significant limitation associated with OMS analysis of unknowns, especially in mixtures. Specifically, a priori knowledge via selection of the overtone used to separate ions makes it possible to directly determine ion mobilities for unknown species and collision cross sections (assuming that the ion charge state is known). We refer to this selection method of operation as selected overtone mobility spectrometry (SOMS). A simple theoretical description of the SOMS approach is provided. Simulations are carried out and discussed in order to illustrate the advantages and disadvantages of SOMS compared with traditional OMS. Finally, the SOMS method (and its distinction from OMS) is demonstrated experimentally by examining a mixture of peptides generated by enzymatic digestion of the equine cytochrome c with trypsin.


Assuntos
Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Citocromos c/química , Citocromos c/metabolismo , Modelos Teóricos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Substância P/química , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA