RESUMO
Root-associated microbes can improve plant growth, and they offer the potential to increase crop resilience to future drought. Although our understanding of the complex feedbacks between plant and microbial responses to drought is advancing, most of our knowledge comes from non-crop plants in controlled experiments. We propose that future research efforts should attempt to quantify relationships between plant and microbial traits, explicitly focus on food crops, and include longer-term experiments under field conditions. Overall, we highlight the need for improved mechanistic understanding of the complex feedbacks between plants and microbes during, and particularly after, drought. This requires integrating ecology with plant, microbiome, and molecular approaches and is central to making crop production more resilient to our future climate.
Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/microbiologia , Secas , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Rizosfera , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologiaRESUMO
Soil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes. This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances. Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture. Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances.
Assuntos
Bactérias/metabolismo , Secas , Fungos/metabolismo , Microbiologia do Solo , Biomassa , Ecossistema , Modelos Biológicos , Plantas/microbiologia , SoloRESUMO
Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.