Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(51): 17802-7, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25412210

RESUMO

Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor-acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene-porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions.

2.
J Mater Chem A Mater ; 12(19): 11635-11643, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38751728

RESUMO

A better understanding of the materials' fundamental physical processes is necessary to push hybrid perovskite photovoltaic devices towards their theoretical limits. The role of the perovskite grain boundaries is essential to optimise the system thoroughly. The influence of the perovskite grain size and crystal orientation on physical properties and their resulting photovoltaic performance is examined. We develop a novel, straightforward synthesis approach that yields crystals of a similar size but allows the tuning of their orientation to either the (200) or (002) facet alignment parallel to the substrate by manipulating dimethyl sulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) ratios. This decouples crystal orientation from grain size, allowing the study of charge carrier mobility, found to be improved with larger grain sizes, highlighting the importance of minimising crystal disorder to achieve efficient devices. However, devices incorporating crystals with the (200) facet exhibit an s-shape in the current density-voltage curve when standard scan rates are used, which typically signals an energetic interfacial barrier. Using the drift-diffusion simulations, we attribute this to slower-moving ions (mobility of 0.37 × 10-10 cm2 V-1 s-1) in combination with a lower density of mobile ions. This counterintuitive result highlights that reducing ion migration does not necessarily minimise hysteresis.

3.
ACS Appl Mater Interfaces ; 9(43): 37655-37661, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29019644

RESUMO

Understanding the charge transport characteristics and their limiting factors in organolead halide perovskites is of great importance for the development of competitive and economically advantageous photovoltaic systems derived from these materials. In the present work, we examine the charge carrier mobilities in CH3NH3PbI3 (MAPI) thin films obtained from a one-step synthesis procedure and in planar n-i-p devices based on these films. By performing time-of-flight measurements, we find mobilities around 6 cm2/V s for electrons and holes in MAPI thin films, whereas in working solar cells, the respective effective mobility values are reduced by 3 orders of magnitude. From complementary experiments on devices with varying thicknesses of electron and hole transport layers, we identify the charge extraction layers and the associated interfaces rather than the perovskite material itself as the major limiting factors of the charge carrier transport time in working devices.

4.
Chem Asian J ; 11(8): 1199-204, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-26928877

RESUMO

State-of-the-art solar cells based on methylammonium lead iodide (MAPbI3 ) now reach efficiencies over 20 %. This fast improvement was possible with intensive research in perovskite processing. In particular, chloride-based precursors are known to have a positive influence on the crystallization of the perovskite. Here, we used a combination of in-situ X-ray diffraction and charge-transport measurements to understand the influence of chloride during perovskite crystallization in planar heterojunction solar cells. We show that MAPbCl3 crystallizes directly after the deposition of the starting solution and acts as a template for the formation of MAPbI3 . Additionally, we show that the charge-carrier mobility doubles by extending the time for the template formation. Our results give a deeper understanding of the influence of chloride in the synthesis of MAPbI3 and illustrate the importance of carefully controlling crystallization for reproducible, high-efficiency solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA