Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Microbiol ; 21(9): e13046, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099152

RESUMO

The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.


Assuntos
Autofagossomos/microbiologia , Células Epiteliais/microbiologia , Yersinia enterocolitica/patogenicidade , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Morte Celular , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/ultraestrutura , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo
2.
Nat Commun ; 10(1): 1729, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988283

RESUMO

RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.


Assuntos
Apoptose , Modelos Imunológicos , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Caspase 8/genética , Caspase 8/metabolismo , Caspase 8/fisiologia , Linhagem Celular , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Imunidade/fisiologia , Camundongos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina/química , Serina/metabolismo , Yersinia , Yersiniose/imunologia
3.
Mol Cell Oncol ; 5(1): e1396389, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404394

RESUMO

Complex posttranslational modifications determine the effects of receptor-interacting protein kinase-1 (RIPK1) on cell survival and death. Studies from us and others have revealed a p38MAPK/MK2-dependent checkpoint in RIPK1 signaling. MAPKAP kinase 2 (MK2) phosphorylates RIPK1 to suppress RIPK1-mediated apoptosis and necroptosis in response to diverse stimuli relevant to inflammation, infection, genotoxic stress and chemotherapy.

4.
Nat Cell Biol ; 19(10): 1248-1259, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28920954

RESUMO

Receptor-interacting protein kinase-1 (RIPK1), a master regulator of cell fate decisions, was identified as a direct substrate of MAPKAP kinase-2 (MK2) by phosphoproteomic screens using LPS-treated macrophages and stress-stimulated embryonic fibroblasts. p38MAPK/MK2 interact with RIPK1 in a cytoplasmic complex and MK2 phosphorylates mouse RIPK1 at Ser321/336 in response to pro-inflammatory stimuli, such as TNF and LPS, and infection with the pathogen Yersinia enterocolitica. MK2 phosphorylation inhibits RIPK1 autophosphorylation, curtails RIPK1 integration into cytoplasmic cytotoxic complexes, and suppresses RIPK1-dependent apoptosis and necroptosis. In Yersinia-infected macrophages, RIPK1 phosphorylation by MK2 protects against infection-induced apoptosis, a process targeted by Yersinia outer protein P (YopP). YopP suppresses p38MAPK/MK2 activation to increase Yersinia-driven apoptosis. Hence, MK2 phosphorylation of RIPK1 is a crucial checkpoint for cell fate in inflammation and infection that determines the outcome of bacteria-host cell interaction.


Assuntos
Apoptose , Inflamação/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Yersiniose/enzimologia , Yersinia enterocolitica/patogenicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Citosol/enzimologia , Citosol/microbiologia , Feminino , Genótipo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Quinase I-kappa B/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Necrose , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Serina , Transdução de Sinais , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/toxicidade , Yersiniose/microbiologia , Yersiniose/patologia , Yersinia enterocolitica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA