Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2223): 20200383, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35341302

RESUMO

Factoring a wave function into marginal and conditional factors partitions the subsystem kinetic energy into two terms. The first depends solely on the marginal wave function, through its gauge-covariant derivative, while the second depends on the quantum metric of the conditional wave function over the manifold of marginal variables. We derive an identity for the rate of change of the second term. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.

2.
Proc Natl Acad Sci U S A ; 114(11): 2801-2806, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28265085

RESUMO

The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

3.
Nano Lett ; 18(3): 1842-1848, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29424230

RESUMO

Laser pulses induce spin-selective charge flow that we show to generate dramatic changes in the magnetic structure of materials, including a switching of magnetic order from antiferromagnetic (AFM) to transient ferromagnetic (FM) in multisub-lattice systems. The microscopic mechanism underpinning this ultrafast switching of magnetic order is dominated by spin-selective charge transfer from one magnetic sublattice to another. Because this spin modulation is purely optical in nature (i.e., not mediated indirectly via the spin-orbit interaction) this is one of the fastest means of manipulating spin by light. We further demonstrate this mechanism to be universally applicable to AFM, FM, and ferri-magnets in both multilayer and bulk geometry and provide three rules that encapsulate early-time magnetization dynamics of multisub-lattice systems.

4.
Phys Rev Lett ; 114(4): 047002, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25679904

RESUMO

Inelastic tunneling spectroscopy of Pb islands on Cu(111) obtained by scanning tunneling microscopy below 1 K provides a direct access to the local Eliashberg function of the islands with high energy resolution. The Eliashberg function describes the electron-phonon interaction causing conventional superconductivity. The measured Eliashberg function strongly depends on the local thickness of the Pb nanostructures and shows a sharp maximum when quantum well states of the Pb islands come close to the Fermi energy. Ab initio calculations reveal that this is related to enhanced electron-phonon coupling at these thicknesses.


Assuntos
Elétrons , Chumbo/química , Modelos Teóricos , Fônons , Teoria Quântica , Cobre/química , Microscopia de Tunelamento/métodos
5.
Adv Mater ; 29(10)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092134

RESUMO

A conducting 2D electron gas (2DEG) is formed at the interface between epitaxial LaFeO3 layers >3 unit cells thick and the surface of SrTiO3 single crystals. The 2DEG is exquisitely sensitive to cation intermixing and oxygen nonstoichiometry. It is shown that the latter thus allows the controllable formation of the 2DEG via ionic liquid gating, thereby forming a nonvolatile switch.

6.
Sci Rep ; 6: 24411, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27076097

RESUMO

We predict a fast domain wall (DW) motion induced by a thermal gradient across a nanoscopic ferromagnetic stripe of MnBi. The driving mechanism is an exchange torque fueled by magnon accumulation at the DWs. Depending on the thickness of the sample, both hot-to-cold and cold-to-hot DW motion directions are possible. The finding unveils an energy efficient way to manipulate DWs as an essential element in magnetic information processing such as racetrack memory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA