Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112378

RESUMO

The aim of the present case report was to provide a longitudinal functional assessment of a patient with transfemoral amputation from the preoperative status with socket-type prosthesis to one year after the osseointegration surgery. A 44 years-old male patient was scheduled for osseointegration surgery 17 years after transfemoral amputation. Gait analysis was performed through 15 wearable inertial sensors (MTw Awinda, Xsens) before surgery (patient wearing his standard socket-type prosthesis) and at 3-, 6-, and 12-month follow-ups after osseointegration. ANOVA in Statistical Parametric Mapping was used to assess the changes in amputee and sound limb hip and pelvis kinematics. The gait symmetry index progressively improved from the pre-op with socket-type (1.14) to the last follow-up (1.04). Step width after osseointegration surgery was half of the pre-op. Hip flexion-extension range significantly improved at follow-ups while frontal and transverse plane rotations decreased (p < 0.001). Pelvis anteversion, obliquity, and rotation also decreased over time (p < 0.001). Spatiotemporal and gait kinematics improved after osseointegration surgery. One year after surgery, symmetry indices were close to non-pathological gait and gait compensation was sensibly decreased. From a functional point of view, osseointegration surgery could be a valid solution in patients with transfemoral amputation facing issues with traditional socket-type prosthesis.


Assuntos
Amputados , Membros Artificiais , Humanos , Masculino , Adulto , Osseointegração , Análise da Marcha , Fêmur/cirurgia , Marcha , Desenho de Prótese
2.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299763

RESUMO

The design and fitting of prosthetic sockets can significantly affect the acceptance of an artificial limb by persons with lower limb amputations. Clinical fitting is typically an iterative process, which requires patients' feedback and professional assessment. When feedback is unreliable due to the patient's physical or psychological conditions, quantitative measures can support decision-making. Specifically, monitoring the skin temperature of the residual limb can provide valuable information regarding unwanted mechanical stresses and reduced vascularization, which can lead to inflammation, skin sores and ulcerations. Multiple 2D images to examine a real-life 3D limb can be cumbersome and might only offer a partial assessment of critical areas. To overcome these issues, we developed a workflow for integrating thermographic information on the 3D scan of a residual limb, with intrinsic reconstruction quality measures. Specifically, workflow allows us to calculate a 3D thermal map of the skin of the stump at rest and after walking, and summarize this information with a single 3D differential map. The workflow was tested on a person with transtibial amputation, with a reconstruction accuracy lower than 3 mm, which is adequate for socket adaptation. We expect the workflow to improve socket acceptance and patients' quality of life.


Assuntos
Membros Artificiais , Qualidade de Vida , Humanos , Fluxo de Trabalho , Desenho de Prótese , Amputação Cirúrgica , Cotos de Amputação , Tíbia/cirurgia
3.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177725

RESUMO

Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.


Assuntos
Amputados , Membros Artificiais , Humanos , Retroalimentação , Tecnologia Háptica , Qualidade de Vida , Extremidade Inferior , , Caminhada , Marcha , Fenômenos Biomecânicos
4.
J Neuroeng Rehabil ; 19(1): 10, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090512

RESUMO

BACKGROUND: In the field of myoelectric control systems, pattern recognition (PR) algorithms have become always more interesting for predicting complex electromyography patterns involving movements with more than 2 Degrees of Freedom (DoFs). The majority of classification strategies, used for the prosthetic control, are based on single, hierarchical and parallel linear discriminant analysis (LDA) classifiers able to discriminate up to 19 wrist/hand gestures (in the 3-DoFs case), considering both combined and discrete motions. However, these strategies were introduced to simultaneously classify only 2 DoFs and their use is limited by the lack of online performance measures. This study introduces a novel classification strategy based on the Logistic Regression (LR) algorithm with regularization parameter to provide simultaneous classification of 3 DoFs motion classes. METHODS: The parallel PR-based strategy was tested on 15 healthy subjects, by using only six surface EMG sensors. Twenty-seven discrete and complex elbow, hand and wrist motions were classified by keeping the number of electromyographic (EMG) electrodes to a bare minimum and the classification error rate under 10 %. To this purpose, the parallel classification strategy was implemented by using three classifiers one for each DoF: the "Elbow classifier", the "Wrist classifier", and the "Hand classifier" provided the simultaneous control of the elbow, hand, and wrist joints, respectively. RESULTS: Both the offline and real-time performance metrics were evaluated and compared with the LDA parallel classification results. The real-time recognition results were statistically better with the LR classifier with respect to the LDA classifier, for all motion classes (elbow, hand and wrist). CONCLUSIONS: In this paper, a novel parallel PR-based strategy was proposed for classifying up to 3 DoFs: three joint classifiers were employed simultaneously for classifying 27 motion classes related to the elbow, wrist, and hand and promising results were obtained.


Assuntos
Membros Artificiais , Punho , Cotovelo , Eletromiografia/métodos , Mãos , Humanos , Movimento , Reconhecimento Automatizado de Padrão/métodos , Articulação do Punho
5.
J Neuroeng Rehabil ; 19(1): 68, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787721

RESUMO

BACKGROUND: Cybathlon championship aims at promoting the development of prosthetic and assistive devices capable to meet users' needs. This paper describes and analyses possible exploitation outcomes of our team's (REHAB TECH) experience into the Powered Arm Prosthesis Race of the Cybathlon 2020 Global Edition, with the novel prosthetic system Hannes. In detail, we present our analysis on a concurrent evaluation conducted to verify if the Cybathlon training and competition positively influenced pilot's performance and human-technology integration with Hannes, with respect to a non-runner Hannes user. METHODS: Two transradial amputees were recruited as pilots (Pilot 1 and Pilot 2) for the Cybathlon competition and were given the polyarticulated myoelectric prosthetic hand Hannes. Due to COVID-19 emergency, only Pilot 1 was trained for the race. However, both pilots kept Hannes for Home Use for seven weeks. Before this period, they both participated to the evaluation of functionality, embodiment, and user experience (UX) related to Hannes, which they repeated at the end of the Home Use and right after the competition. We analysed Pilot 1's training and race outcomes, as well as changes in the concurrent evaluation, and compared these results with Pilot 2's ones. RESULTS: The Cybathlon training gradually improved Pilot 1's performances, leading to the sixth place with a single error in task 5. In the parallel evaluation, both pilots had an overall improvement over time, whereas Pilot 2 experienced a deterioration of embodiment. In detail, Pilot 1, who followed the training and raced the Cybathlon, improved in greater way. CONCLUSION: Hannes demonstrated to be a valuable competitor and to perform grasps with human-like behaviors. The higher improvements of Pilot 1, who actively participated in the Cybathlon, in terms of functionality, embodiment and UX, may depend on his training and engagement in the effort of achieving a successful user-prosthesis interaction during the competition. Tasks based on Cybathlon's ones could improve the training phase of a prosthetic user, stimulating dexterity, prosthetic integration, and user perception towards the prosthesis. Likewise, timed races or competitions could facilitate and accelerate the learning phase, improving the efficiency and efficacy of the process.


Assuntos
Amputados , Membros Artificiais , COVID-19 , Mãos , Humanos , Extremidade Superior
6.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270877

RESUMO

Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy). The performance of both algorithms was benchmarked against a force platform and a marker-based stereophotogrammetric motion capture system. HS and TO were estimated with a time error lower than 0.100 s for both the algorithms, sufficient for the control of a lower-limb robotic prosthesis. Finally, the CoPy computed from the PS showed a Pearson correlation coefficient of 0.97 (0.02) with the same variable computed through the force platform.


Assuntos
Procedimentos Cirúrgicos Robóticos , Fenômenos Biomecânicos , , Marcha , Humanos , Transdutores de Pressão
7.
J Neuroeng Rehabil ; 18(1): 168, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863213

RESUMO

BACKGROUND: Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap. METHODS: A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities. RESULTS: The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features-with implications towards prosthesis design tradeoffs. CONCLUSIONS: This study's findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.


Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Atividades Cotidianas , Amputação Cirúrgica , Amputados/reabilitação , Humanos , Masculino , Desenho de Prótese , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Design Centrado no Usuário , Caminhada
8.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802231

RESUMO

The evolution of technological and surgical techniques has made it possible to obtain an even more intuitive control of multiple joints using advanced prosthetic systems. Targeted Muscle Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving the prosthetic control for people with different amputation levels of the limb. Indeed, TMR surgery makes it possible to obtain reinnervated areas that act as biological amplifiers of the motor control. On the technological side, a great deal of research has been conducted in order to evaluate various types of myoelectric prosthetic control strategies, whether direct control or pattern recognition-based control. In the literature, different control performance metrics, which have been evaluated on TMR subjects, have been introduced, but no accepted reference standard defines the better strategy for evaluating the prosthetic control. Indeed, the presence of several evaluation tests that are based on different metrics makes it difficult the definition of standard guidelines for comprehending the potentiality of the proposed control systems. Additionally, there is a lack of evidence about the comparison of different evaluation approaches or the presence of guidelines on the most suitable test to proceed for a TMR patients case study. Thus, this review aims at identifying these limitations by examining the several studies in the literature on TMR subjects, with different amputation levels, and proposing a standard method for evaluating the control performance metrics.


Assuntos
Membros Artificiais , Amputação Cirúrgica , Cotos de Amputação , Eletromiografia , Humanos , Extremidade Superior
9.
Artif Organs ; 42(9): E215-E233, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30074617

RESUMO

Urinary incontinence affects more than 300 million people worldwide. The implantation of a medical device called an artificial urinary sphincter (AUS) is the gold standard treatment when conservative and minimally invasive therapies fail. In this article, the AUSs (extra-urethral and endo-urethral sphincters) available on the market, both presented at the research level and filed as patents, are reviewed. The ability of the different solutions to effectively replace the natural sphincter are discussed, together with advantages and some possible side effects, such as tissue atrophy, overall invasiveness of the implant, and so forth. Finally, future research priorities are discussed for both endo-urethral and extra-urethral approaches considering key engineering aspects, such as materials, compression and closure mechanisms, and implantation methods, with the long-term aim of developing an effective, reliable, durable, and minimally invasive AUS capable of restoring a normal quality of life for incontinent patients.


Assuntos
Implantação de Prótese , Qualidade de Vida , Incontinência Urinária/cirurgia , Esfíncter Urinário Artificial , Humanos , Resultado do Tratamento
10.
J Neuroeng Rehabil ; 14(1): 82, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28807038

RESUMO

BACKGROUND: Currently, the typically adopted hand prosthesis surface electromyography (sEMG) control strategies do not provide the users with a natural control feeling and do not exploit all the potential of commercially available multi-fingered hand prostheses. Pattern recognition and machine learning techniques applied to sEMG can be effective for a natural control based on the residual muscles contraction of amputated people corresponding to phantom limb movements. As the researches has reached an advanced grade accuracy, these algorithms have been proved and the embedding is necessary for the realization of prosthetic devices. The aim of this work is to provide engineering tools and indications on how to choose the most suitable classifier, and its specific internal settings for an embedded control of multigrip hand prostheses. METHODS: By means of an innovative statistical analysis, we compare 4 different classifiers: Nonlinear Logistic Regression, Multi-Layer Perceptron, Support Vector Machine and Linear Discriminant Analysis, which was considered as ground truth. Experimental tests have been performed on sEMG data collected from 30 people with trans-radial amputation, in which the algorithms were evaluated for both performance and computational burden, then the statistical analysis has been based on the Wilcoxon Signed-Rank test and statistical significance was considered at p < 0.05. RESULTS: The comparative analysis among NLR, MLP and SVM shows that, for either classification performance and for the number of classification parameters, SVM attains the highest values followed by MLP, and then by NLR. However, using as unique constraint to evaluate the maximum acceptable complexity of each classifier one of the typically available memory of a high performance microcontroller, the comparison pointed out that for people with trans-radial amputation the algorithm that produces the best compromise is NLR closely followed by MLP. This result was also confirmed by the comparison with LDA with time domain features, which provided not significant differences of performance and computational burden between NLR and LDA. CONCLUSIONS: The proposed analysis would provide innovative engineering tools and indications on how to choose the most suitable classifier based on the application and the desired results for prostheses control.


Assuntos
Algoritmos , Membros Artificiais , Bioengenharia/métodos , Eletromiografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Amputados , Análise Discriminante , Dedos/fisiologia , Mãos/fisiologia , Humanos , Movimento/fisiologia , Máquina de Vetores de Suporte
11.
Sensors (Basel) ; 17(4)2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28420135

RESUMO

Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.


Assuntos
Gestos , Algoritmos , Amputados , Membros Artificiais , Eletromiografia , Mãos , Humanos , Reconhecimento Automatizado de Padrão , Próteses e Implantes , Qualidade de Vida
12.
Adv Healthc Mater ; : e2302896, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656615

RESUMO

Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to treat diseases such as diabetes or hypertension. Here, this study proposes to extend the use of these technologies to (re-)establish the connection between new (transplanted or artificial) organs and the nervous system in order to increase the long-term efficacy and the effective biointegration of these solutions. In this perspective paper, some clinically relevant applications of this approach are briefly described. Then, the choices that neural engineers must implement about the type, implantation location, and closed-loop control algorithms to successfully realize this approach are highlighted. It is believed that these new "organ neuroprostheses" are going to become more and more valuable and very effective solutions in the years to come.

13.
J Hand Surg Eur Vol ; 49(4): 512-519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37606585

RESUMO

Thumb amputations affect 50% of hand functionality. Common solutions consist of microsurgical treatments or silicone vacuum prosthesis. Not all patients are eligible for microsurgical treatment and the use of vacuum prosthesis is often discouraged because of their instability. On the contrary, osseointegrated prosthesis provide stable retention and osseoperception. This cadaveric study evaluated the process of a patient-matched osseointegrated prosthesis for the treatment of thumb amputees. Computed tomography (CT) medical images reconstruction provided information on metacarpal stump, used as input for the parametric screw design. Preoperative planning guided the surgeons in the surgery: postoperative placement confirmed the accuracy of the preoperative planning. Surgeons were directly involved in the implant design to meet their requirements and patient needs. Implants were inserted into cadaveric specimens in one-stage surgery. A similar process can be adopted and exploited for the treatment of different levels of thumb amputations and long finger amputations.


Assuntos
Amputados , Polegar , Humanos , Estudos de Viabilidade , Próteses e Implantes , Cadáver , Desenho de Prótese
14.
Prosthet Orthot Int ; 48(2): 176-183, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379468

RESUMO

BACKGROUND: Among the different factors affecting socket comfort, the pressure applied on residual limb tissues is a crucial parameter for the success or failure of any prosthetic device. However, only a few incomplete data are available on people with transfemoral amputation, in this regard. This work aims at filling this gap in the literature. METHODS: Ten people with transfemoral amputation wearing 3 different socket designs were recruited in this study: 2 ischial containment sockets featured by proximal trim lines that contain the ischial tuberosity and ramus and greater trochanter, 2 subischial sockets with proximal trim lines under the ischium level, and 6 quadrilateral sockets with proximal trim lines that contain the greater trochanter and create a horizontal seat for the ischial tuberosity. The pressure values at the anterior, lateral, posterior, and medial areas of the socket interface were recorded during 5 locomotion tasks (ie, horizontal, ascent, and descent walking, upstairs and downstairs) by using an F-Socket System (Tekscan Inc., Boston, MA). Gait segmentation was performed by exploiting plantar pressure, which was acquired by an additional sensor under the foot. Mean and standard deviation of minimum and maximum values were calculated for each interface area, locomotion task, and socket design. The mean pressure patterns during different locomotion tasks were reported, as well. RESULTS: Considering all subjects irrespective of socket design, the mean pressure range resulted 45.3 (posterior)-106.7 (posterior) kPa in horizontal walking; 48.3 (posterior)-113.8 (posterior) kPa in ascent walking; 50.8 (posterior)-105.7 (posterior) kPa in descent walking; 47.9 (posterior)-102.9 (lateral) kPa during upstairs; and 41.8 (posterior)-84.5 (anterior) kPa during downstairs. Qualitative differences in socket designs have been found. CONCLUSIONS: These data allow for a comprehensive analysis of pressures acting at the tissue-socket interface in people with transfemoral amputation, thus offering essential information for the design of novel solutions or to improve existing ones, in this field.


Assuntos
Cotos de Amputação , Membros Artificiais , Humanos , Desenho de Prótese , Amputação Cirúrgica , Fêmur/cirurgia
15.
Front Bioeng Biotechnol ; 12: 1360208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576443

RESUMO

Osseointegrated transfemoral prostheses experience aseptic complications with an incidence between 3% and 30%. The main aseptic risks are implant loosening, adverse bone remodeling, and post-operative periprosthetic fractures. Implant loosening can either be due to a lack of initial (primary) stability of the implant, which hinders bone ingrowth and therefore prevents secondary stability, or, in the long-term, to the progressive resorption of the periprosthetic bone. Post-operative periprosthetic fractures are most often caused by stress concentrations. A method to simultaneously evaluate the primary stability and the load transfer is currently missing. Furthermore, the measurement errors are seldom reported in the literature. In this study a method to reliably quantify the bone implant interaction of osseointegrated transfemoral prostheses in terms of primary stability and load transfer was developed, and its precision was quantified. Micromotions between the prosthesis and the host bone and the strains on the cortical bone were measured on five human cadaveric femurs with a typical commercial osseointegrated implant. To detect the primary stability of the implant and the load transfer, cyclic loads were applied, simulating the peak load during gait. Digital Image Correlation was used to measure displacements and bone strains simultaneously throughout the test. Permanent migrations and inducible micromotions were measured (three translations and three rotations), while, on the same specimen, the full-field strain distribution on the bone surface was measured. The repeatability tests showed that the devised method had an intra-specimen variability smaller than 6 µm for the translation, 0.02 degrees for the rotations, and smaller than 60 microstrain for the strain distribution. The inter-specimen variability was larger than the intra-specimen variability due to the natural differences between femurs. Altogether, the measurement uncertainties (intrinsic measurement errors, intra-specimen repeatability and inter-specimen variability) were smaller than critical levels of biomarkers for adverse remodelling and aseptic loosening, thus allowing to discriminate between stable and unstable implants, and to detect critical strain magnitudes in the host bone. In conclusion, this work showed that it is possible to measure the primary stability and the load transfer of an osseointegrated transfemoral prosthesis in a reliable way using a combination of mechanical testing and DIC.

16.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675291

RESUMO

The restoration of sensory feedback is one of the current challenges in the field of prosthetics. This work, following the analysis of the various types of sensory feedback, aims to present a prototype device that could be used both for implantable applications to perform PNS and for wearable applications, performing TENS, to restore sensory feedback. The two systems are composed of three electronic boards that are presented in detail, as well as the bench tests carried out. To the authors' best knowledge, this work presents the first device that can be used in a dual scenario for restoring sensory feedback. Both the implantable and wearable versions respected the expected values regarding the stimulation parameters. In its implantable version, the proposed system allows simultaneous and independent stimulation of 30 channels. Furthermore, the capacity of the wearable version to elicit somatic sensations was evaluated on healthy participants demonstrating performance comparable with commercial solutions.

17.
Prosthet Orthot Int ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775750

RESUMO

BACKGROUND: Despite the demonstrated greater efficacy of microprocessor knees (MPK) over mechanical knees (MK), the latter is still widely used by persons with transfemoral amputation. Besides motivations related to local insurance policies, quality of life (QoL) and satisfaction with the prosthesis play a key role in user preference. OBJECTIVE: The aim of this study is to compare QoL and satisfaction in a large sample of MPK and MK users and to assess how these outcomes are explained by clinical and demographic characteristics. STUDY DESIGN: Retrospective study. METHODS: The study was conducted on 75 MPK and 60 MK users. Quality of life was assessed using the EuroQoL Five Dimensions and the EuroQoL Visual Analog Scale questionnaires. Satisfaction was assessed with the Satisfaction with Prosthesis questionnaire. All 3 instruments were self-administered. Univariate and multivariate regression analyses were conducted thereafter. RESULTS: The difference in satisfaction between MPK and MK users was not statistically significant. Significant differences were observed instead for QoL. From the univariate regression analysis, 6 factors were significant predictors of QoL and satisfaction. On multivariate analysis, the number of significant factors was reduced to 3, namely knee type, age at the first prosthesis, and experience with prosthesis. Type of knee and age at the first prosthesis significantly predicted QoL scores, explaining 12% of EuroQoL Five Dimensions and 25% of EuroQoL Visual Analog Scale variances. Age at the first prosthesis and experience with prosthesis predicted Satisfaction with Prosthesis scores in the multivariate model, explaining 25% of the variance. CONCLUSIONS: MPK affects QoL but not satisfaction, which is positively driven by patients' experience with prosthesis and negatively affected by the age at the time of the first prosthesis.

18.
Med ; 5(2): 118-125.e5, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38340707

RESUMO

BACKGROUND: Recently, we reported the presence of phantom thermal sensations in amputees: thermal stimulation of specific spots on the residual arm elicited thermal sensations in their missing hands. Here, we exploit phantom thermal sensations via a standalone system integrated into a robotic prosthetic hand to provide real-time and natural temperature feedback. METHODS: The subject (a male adult with unilateral transradial amputation) used the sensorized prosthesis to manipulate objects and distinguish their thermal properties. We tested his ability to discriminate between (1) hot, cold, and ambient temperature objects, (2) different materials (copper, glass, and plastic), and (3) artificial versus human hands. We also introduced the thermal box and block test (thermal BBT), a test to evaluate real-time temperature discrimination during standardized pick-and-place tasks. FINDINGS: The subject performed all three discrimination tasks above chance level with similar accuracies as with his intact hand. Additionally, in all 15 sessions of the thermal BBT, he correctly placed more than half of the samples. Finally, the phantom thermal sensation was stable during the 13 recording sessions spread over 400 days. CONCLUSION: Our study paves the way for more natural hand prostheses that restore the full palette of sensations. FUNDING: This work was funded by the Bertarelli Foundation (including the Catalyst program); the Swiss National Science Foundation through the National Centre of Competence in Research (NCCR) Robotics; the European Union's Horizon 2020 research and innovation program; the Horizon Europe Research & Innovation Program; the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP); and the Tuscany Health Ecosystem.


Assuntos
Membros Artificiais , Membro Fantasma , Adulto , Humanos , Masculino , Retroalimentação , Mãos/fisiologia , Sensação
19.
Artigo em Inglês | MEDLINE | ID: mdl-38507380

RESUMO

Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator is controlled to compress the foot during the stance phase, supplementing the natural compression due to the user's dynamic interaction with the ground, particularly during the ankle dorsiflexion phase, and to release the energy stored in the foot during the push-off phase, to enhance propulsion. The control strategy is adaptive to the user's gait patterns and speed. The clinical protocol to evaluate the system included treadmill and overground walking tasks. The results showed that walking with the semi-active prosthesis reduced the Physiological Cost Index of transtibial amputees by up to 16% compared to walking using the subjects' proprietary prosthesis. No significant alterations were observed in the spatiotemporal gait parameters of the participants, indicating the module's compatibility with users' natural walking patterns. These findings highlight the potential of the mechatronic actuator in effectively reducing energy expenditure during walking for transtibial amputees. The proposed prosthesis may bring a positive impact on the quality of life, mobility, and functional performance of individuals with transtibial amputation.


Assuntos
Amputados , Membros Artificiais , Humanos , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Desenho de Prótese , Qualidade de Vida , Caminhada/fisiologia
20.
Int J Rehabil Res ; 46(1): 108-111, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728884

RESUMO

The Prosthetic Mobility Questionnaire (PMQ 2.0) represents a reliable solution for evaluating amputees' self-perceived mobility. The study aimed to evaluate the perceived mobility of middle-aged users with a traumatic amputation using the PMQ 2.0 and to assess the influence of age, stump and phantom limb pain, amputation level, time since amputation, and prosthesis use on it. Fifty subjects were recruited. The median value of the score was higher than previously published reference values, reflecting the 'active' mobility status of the sample. The hours of prosthesis use per day explained about 21% of the variance of the questionnaire score and was a significant predictor of perceived mobility. Reference values for the recently developed PMQ 2.0 survey and relative to active, traumatic amputees were reported. As prosthesis use was a significant predictor of the amputees' perceived mobility, prolonged use of the artificial limb should be always encouraged in clinical practice.


Assuntos
Amputados , Membros Artificiais , Membro Fantasma , Pessoa de Meia-Idade , Humanos , Amputação Cirúrgica , Extremidade Inferior , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA