Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 149(24): 1903-1920, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38357802

RESUMO

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Macrófagos , Septinas , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac1 de Ligação ao GTP , Animais , Humanos , Masculino , Camundongos , Angiotensina II/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/genética , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Neuropeptídeos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Septinas/metabolismo , Septinas/genética , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
2.
Circ Res ; 133(3): 220-236, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37377022

RESUMO

BACKGROUND: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS: GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS: We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Humanos , Camundongos , Coração , Insuficiência Cardíaca/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo
3.
Circulation ; 147(18): 1382-1403, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36951067

RESUMO

BACKGROUND: Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism. METHODS: Protein S-sulfhydration in endothelial cells (ECs) during AAD was detected and hub genes regulating homeostasis of the endothelium were identified. Clinical data of patients with AAD and healthy controls were collected, and the level of the cystathionine γ lyase (CSE)/hydrogen sulfide (H2S) system in plasma and aortic tissue were determined. Mice with EC-specific CSE deletion or overexpression were generated, and the progression of AAD was determined. Unbiased proteomics and coimmunoprecipitation combined with mass spectrometry analysis were conducted to determine the upstream regulators of the CSE/H2S system and the findings were confirmed in transgenic mice. RESULTS: Higher plasma H2S levels were associated with a lower risk of AAD, after adjustment for common risk factors. CSE was reduced in the endothelium of AAD mouse and aorta of patients with AAD. Protein S-sulfhydration was reduced in the endothelium during AAD and protein disulfide isomerase (PDI) was the main target. S-sulfhydration of PDI at Cys343 and Cys400 enhanced PDI activity and mitigated endoplasmic reticulum stress. EC-specific CSE deletion was exacerbated, and EC-specific overexpression of CSE alleviated the progression of AAD through regulating the S-sulfhydration of PDI. ZEB2 (zinc finger E-box binding homeobox 2) recruited the HDAC1-NuRD complex (histone deacetylase 1-nucleosome remodeling and deacetylase) to repress the transcription of CTH, the gene encoding CSE, and inhibited PDI S-sulfhydration. EC-specific HDAC1 deletion increased PDI S-sulfhydration and alleviated AAD. Increasing PDI S-sulfhydration with the H2S donor GYY4137 or pharmacologically inhibiting HDAC1 activity with entinostat alleviated the progression of AAD. CONCLUSIONS: Decreased plasma H2S levels are associated with an increased risk of aortic dissection. The endothelial ZEB2-HDAC1-NuRD complex transcriptionally represses CTH, impairs PDI S-sulfhydration, and drives AAD. The regulation of this pathway effectively prevents AAD progression.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Animais , Camundongos , Cistationina gama-Liase/genética , Células Endoteliais/metabolismo , Endotélio/metabolismo , Histona Desacetilase 1 , Sulfeto de Hidrogênio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteína S , Homeobox 2 de Ligação a E-box com Dedos de Zinco
4.
J Biomed Sci ; 30(1): 44, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370162

RESUMO

BACKGROUND: Cholesterol gallstone disease is a common disease. Reducing cholesterol burden is important to prevent/treat gallstone. In this study, we investigated the application of diosgenin (DG) to prevent the formation of gallstone in mice. METHODS: Adult male C57BL/6J mice were fed with the lithogenic diet (LD) only or LD supplemented with DG or ezetimibe for 8 weeks. Incidences of gallstone formation were documented. Intestine and liver tissues were collected to measure the lipid contents and expression of genes in cholesterol metabolism. Caco2 cells were treated with DG to monitor the regulation on cholesterol absorption and the transcriptional regulation of Npc1l1 gene. Changes of gut microbiota by DG was analyzed. Intraperitoneal injection of LPS on mice was performed to verify its effects on STAT3 activation and Npc1l1 expression in the small intestine. RESULTS: LD led to 100% formation of gallstones in mice. In comparison, dietary DG or ezetimibe supplementary completely prevents gallstones formation. DG inhibited intestinal cholesterol absorption in mice as well as in Caco2 cells by down-regulation of Npc1l1 expression. DG could directly inhibit phosphorylation of STAT3 and its transcriptional regulation of Npc1l1 expression. Furthermore, DG could modulate gut microbiota profiles and LPS mediated STAT3 activation and Npc1l1 expression. CONCLUSION: Our results demonstrated that dietary DG could inhibit intestinal cholesterol absorption through decreasing NPC1L1 expression to prevent cholesterol gallstone formation.


Assuntos
Diosgenina , Cálculos Biliares , Humanos , Camundongos , Masculino , Animais , Cálculos Biliares/prevenção & controle , Cálculos Biliares/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Diosgenina/farmacologia , Diosgenina/metabolismo , Células CACO-2 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Intestinos , Colesterol , Dieta , Ezetimiba/farmacologia , Ezetimiba/metabolismo , Fígado/metabolismo
5.
Environ Sci Technol ; 57(51): 21581-21592, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085933

RESUMO

The internal exposure dose of bisphenol S (BPS) is increasing since its use as a substitute for BPA. The relationship between BPS and nonalcoholic liver disease (NAFLD) and the underlying mechanism remain unclarified. In this study, we evaluated the correlation of BPS with NAFLD in populations from the Jiangsu Survey and the 2013-2016 National Health Nutrition Examination Survey and unraveled the molecular pathway by which BPS blocked hepatic autophagy, contributing to lipid accumulation. The study found that serum and urine BPS were associated with NAFLD risks in both the Chinese and US populations. For each additional unit of the BPS level, the NAFLD risk increased by 3.163-fold (serum) and 3.979-fold (urine) in the Chinese population. In addition, after BPS exposure at a dose equivalent to human exposure for 20 weeks, mice developed liver lipid accumulation. BPS could trigger PPARα-mediated transcriptional activation of EP300 expression. BPS promoted the translocation of EP300 from the nucleus to the cytoplasm to regulate the acetylation of Raptor and the activation of mTORC1, which in turn induced autophagy blockage and interfered with lipid degradation in hepatocytes. Conversely, knockdown of EP300 reduced Raptor acetylation and ameliorated autophagy blockage. This study demonstrated that EP300 was a key enzyme for the development of BPS-related NAFLD and provided novel evidence that BPS causes NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , PPAR alfa/metabolismo , Fígado/metabolismo , Autofagia , Lipídeos , Compostos Benzidrílicos/toxicidade , Proteína p300 Associada a E1A/metabolismo
6.
Environ Health ; 22(1): 85, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062446

RESUMO

BACKGROUND: Both genetic factors and air pollution are risk factors for coronary artery disease (CAD), but their combined effects on CAD are uncertain. The study aimed to comprehensively investigate their separate, combined and interaction effects on the onset of CAD. METHODS: We utilized data from the UK Biobank with a recruitment of 487,507 participants who were free of CAD at baseline from 2006 to 2010. We explored the separate, combined effect or interaction association among genetic factors, air pollution and CAD with the polygenic risk score (PRS) and Cox proportional hazard models. RESULTS: The hazard ratios (HRs) [95% confidence interval (CI)] of CAD for 10-µg/m3 increases in PM2.5, NO2 and NOx concentrations were 1.25 (1.09, 1.44), 1.03 (1.01, 1.05) and 1.01 (1.00, 1.02), respectively. Participants with high PRS and air pollution exposure had a higher risk of CAD than those with the low genetic risk and low air pollution exposure, and the HRs (95% CI) of CAD in the PM2.5, PM10, NO2 and NOx high joint exposure groups were 1.56 (1.48, 1.64), 1.55(1.48, 1.63), 1.57 (1.49, 1.65), and 1.57 (1.49, 1.65), respectively. Air pollution and genetic factors exerted significant additive effects on the development of CAD (relative excess risk due to the interaction [RERI]: 0.12 (0.05, 0.19) for PM2.5, 0.17 (0.10, 0.24) for PM10, 0.14 (0.07, 0.21) for NO2, and 0.17 (0.10, 0.24) for NOx; attributable proportion due to the interaction [AP]: 0.09 (0.04, 0.14) for PM2.5, 0.12 (0.07, 0.18) for PM10, 0.11 (0.06, 0.16) for NO2, and 0.13 (0.08, 0.18) for NOx). CONCLUSION: Exposure to air pollution was significantly related to an increased CAD risk, which could be further strengthened by CAD gene susceptibility. Additionally, there were positive additive interactions between genetic factors and air pollution on the onset of CAD. This can provide a more comprehensive, precise and individualized scientific basis for the risk assessment, prevention and control of CAD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Predisposição Genética para Doença
7.
Arch Toxicol ; 97(12): 3209-3226, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37798514

RESUMO

Administration of CHK1-targeted anticancer therapies is associated with an increased cumulative risk of cardiac complications, which is further amplified when combined with gemcitabine. However, the underlying mechanisms remain elusive. In this study, we generated hiPSC-CMs and murine models to elucidate the mechanisms underlying CHK1 inhibition combined with gemcitabine-induced cardiotoxicity and identify potential targets for cardioprotection. Mice were intraperitoneally injected with 25 mg/kg CHK1 inhibitor AZD7762 and 20 mg/kg gemcitabine for 3 weeks. hiPSC-CMs and NMCMs were incubated with 0.5 uM AZD7762 and 0.1 uM gemcitabine for 24 h. Both pharmacological inhibition or genetic deletion of CHK1 and administration of gemcitabine induced mtROS overproduction and pyroptosis in cardiomyocytes by disrupting mitochondrial respiration, ultimately causing heart atrophy and cardiac dysfunction in mice. These toxic effects were further exacerbated with combination administration. Using mitochondria-targeting sequence-directed vectors to overexpress CHK1 in cardiomyocyte (CM) mitochondria, we identified the localization of CHK1 in CM mitochondria and its crucial role in maintaining mitochondrial redox homeostasis for the first time. Mitochondrial CHK1 function loss mediated the cardiotoxicity induced by AZD7762 and CHK1-knockout. Mechanistically, mitochondrial CHK1 directly phosphorylates SIRT3 and promotes its expression within mitochondria. On the contrary, both AZD7762 or CHK1-knockout and gemcitabine decreased mitochondrial SIRT3 abundance, thus resulting in respiration dysfunction. Further hiPSC-CMs and mice experiments demonstrated that SIRT3 overexpression maintained mitochondrial function while alleviating CM pyroptosis, and thereby improving mice cardiac function. In summary, our results suggest that targeting SIRT3 could represent a novel therapeutic approach for clinical prevention and treatment of cardiotoxicity induced by CHK1 inhibition and gemcitabine.


Assuntos
Quinase 1 do Ponto de Checagem , Células-Tronco Pluripotentes Induzidas , Sirtuína 3 , Animais , Camundongos , Cardiotoxicidade/metabolismo , Gencitabina , Homeostase , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos , Oxirredução , Sirtuína 3/genética , Quinase 1 do Ponto de Checagem/metabolismo
8.
BMC Med ; 20(1): 454, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424578

RESUMO

BACKGROUND: Previous studies have reported that maternal smoking during pregnancy and breastfeeding may affect the occurrence of hypertension, but whether early life factors modify the impact of the offspring's genetic risk on hypertension is still unknown. The aim of this study was to investigate the relationships among maternal smoking and breastfeeding with adult-onset hypertension and the modified impact of offspring genetic susceptibility. METHODS: This study included 437,185 participants from the UK Biobank who were initially free of hypertension and provided a prospective cohort of individuals aged 40 to 69 years. The association of maternal smoking during pregnancy and breastfeeding with hypertension was examined by using the Cox regression model. Then, a polygenic risk score (PRS) for hypertension was used to test the gene-environmental interaction on hypertension. RESULTS: During a median follow-up period of 8.7 years, a total of 68,148 cases of hypertension were identified in this study. The hazard ratios (HRs) and 95% confidence intervals (CIs) of hypertension for maternal smoking and breastfeeding were 1.11 (1.09, 1.13) and 0.96 (0.94, 0.98), respectively. However, no evidence of an interaction between maternal smoking and breastfeeding was observed. Across all levels of genetic risk, including high genetic risk, maternal smoking and nonbreastfeeding had higher hypertension hazards than nonmaternal smoking and breastfeeding, respectively. The adjusted HRs (95% CIs) of hypertension were 1.80 (1.73, 1.87) in those who had high genetic predisposition plus maternal smoking and 1.67 (1.60-1.74) in those with nonbreastfeeding and high genetic risk. There were significant additive interactions between maternal smoking or breastfeeding and genetic factors on the incidence of hypertension. CONCLUSIONS: Maternal smoking and nonbreastfeeding were associated with a higher risk of hypertension in adulthood and may attenuate the risk of hypertension related to genetic factors. These results suggested that adherence to nonmaternal smoking and breastfeeding was associated with a lower risk of hypertension among participants with all gradients of genetic risk.


Assuntos
Aleitamento Materno , Hipertensão , Adulto , Gravidez , Feminino , Humanos , Estudos Prospectivos , Fumar/efeitos adversos , Fumar/epidemiologia , Hipertensão/epidemiologia , Hipertensão/genética , Mães , Fatores de Risco , Predisposição Genética para Doença
9.
Environ Res ; 215(Pt 1): 114164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36027958

RESUMO

Increasing evidence has shown that exposure to air pollution is linked to adverse birth outcomes, but the results are not consistent. This study was performed on a subset of participants from the UK Biobank between 2006 and 2010. The land use regression (LUR) model was constructed to calculate the concentrations of particulate matter (PM2.5, PM2.5-10 and PM10), nitrogen oxides (NOx), and nitrogen dioxide (NO2). Binary logistic/multivariate linear regression models were applied to explore the potential linear relationships between air pollution exposure and newborn low birth weight (LBW) or BW. The Cochran-Armitage trend test was used to explore the possible association between the air pollution level and LBW. A restricted cubic spline (RCS) transformation of exposure variables was applied to visualize the relation of air pollutants to BW. Exposure to air pollutants, especially PM2.5 and PM10, was positively associated with LBW, and the odds ratios (ORs) and 95% confidence intervals (CIs) for each 10-µg/m3 increase in PM2.5 and PM10 were 1.25 ([1.03, 1.51], P = 0.025) and 1.12 ([1.02, 1.24], P = 0.021), respectively. A negative correlation was observed between the BW and PM2.5 (-0.05 [-0.08, -0.02], P = 0.001), PM10 (-0.03 [-0.05, -0.02], P < 0.001), PM2.5-10 (-0.04 [-0.07, -0.01], P < 0.001) and NOx (0.00 [0.00, 0.00], P = 0.021). Additionally, the BW changed dramatically up to a specific point (PM2.5 for 10.74 µg/m3, Pnonlinearity = 0.004; PM10 for 16.06 µg/m3, Pnonlinearity = 0.004; NO2 for 25.58 µg/m3, Pnonlinearity <0.001; and NOx for 39.88 µg/m3, Pnonlinearity <0.001), subsequently becoming relatively stable. PM2.5 and PM10 exposure were positively associated with LBW, and a negative correlation was observed between PM2.5, PM2.5-10, PM10 and NOx and BW.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Exposição Ambiental , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Dióxido de Nitrogênio , Óxidos de Nitrogênio , Material Particulado/toxicidade
10.
Nutr Metab Cardiovasc Dis ; 31(9): 2637-2643, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34218988

RESUMO

BACKGROUND AND AIMS: Birth weight has been linked to cardiovascular disease (CVD) risk in adulthood, but no consensus has emerged on the threshold of birth weight for the lowest CVD risk and few studies have examined potential interaction between birth weight and adult adiposity. METHODS AND RESULTS: A total of 256,787 participants, who had birth weight data and were free of CVD at baseline, were included from UK Biobank. Multivariate restricted cubic splines and Cox regression models were used to assess the association between birth weight and CVD. We observed nonlinear inverse associations of birth weight with the risk of coronary heart disease (CHD), stroke, and heart failure. Participants with the first quintile of birth weight (≤2.85 kg) had higher risks for CHD (hazard ratio [HR] = 1.23, 95% confidence interval [CI]: 1.15-1.32), stroke (HR = 1.19, 95% CI: 1.03-1.37), and heart failure (HR = 1.28, 95% CI: 1.11-1.48), as compared to the fourth quintile (3.41-3.79 kg). There was a significant interaction between birth weight and adult body mass index (BMI) on CHD and heart failure (both P for interaction <0.001), showing the highest risk for those who had birth weight ≤2.85 kg and BMI ≥30 kg/m2 (HR = 1.96, 95% CI: 1.70-2.25 and HR = 2.39, 95% CI: 1.77-3.22, respectively). CONCLUSIONS: Our findings indicate nonlinear inverse associations between birth weight and CVD risk, with a threshold of 3.41-3.79 kg for the lowest risk. Moreover, low birth weight may interact with adult obesity to increase the risk of CHD and heart failure.


Assuntos
Peso ao Nascer , Doenças Cardiovasculares/epidemiologia , Recém-Nascido de Baixo Peso , Obesidade/epidemiologia , Adiposidade , Adulto , Idoso , Índice de Massa Corporal , Doenças Cardiovasculares/diagnóstico , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Feminino , Fatores de Risco de Doenças Cardíacas , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Obesidade/diagnóstico , Estudos Prospectivos , Medição de Risco , Reino Unido/epidemiologia
11.
Ann Hepatol ; 26: 100558, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653688

RESUMO

INTRODUCTION AND OBJECTIVES: Gallbladder disease is a common disease with high prevalence. Majority of gallbladder disease is due to gallstone. Though genetics are believed to play a role in its pathogenesis, the contribution of environmental pressures in early life to the development of this disease in adulthood has not been ever investigated. This study aimed to clarify the risk of maternal smoking exposure in association with gallbladder disease in adulthood. The interaction of maternal smoking and own smoking during adulthood on this association was studied as well. PATIENTS AND METHODS: A total of 286,731 eligible participants from the UK Biobank population-based cohort were included. Multivariable Cox regression analysis were used to examine the HR and 95% CI with adjustment for covariates. RESULT: During a median of 8.8 years follow-up, 7110 incident cases of gallbladder disease including 6800 (95.6%) gallstone were identified. Maternal smoking was associated with increased risk of incident total gallbladder disease (HR = 1.13; 95%CI: 1.06 - 1.21; P = 0.0002) as well as gallstones (HR = 1.13; 95%CI: 1.06 -1.21; P = 0.0003) in adulthood. Compared with those who were neither exposed to maternal smoking nor own smoking, subjects adherence to no smoking during adulthood but having maternal smoking exposure still had increased risk of total gallbladder disease (HR = 1.21; 95%CI: 1.1-1.34, P=0.0001) and gallstones (HR = 1.21; 95%CI: 1.1-1.35, P=0.0001). CONCLUSION: The present study using large prospective cohort data from UK Biobank, for the first time, demonstrated maternal smoking exposure bringing elevated risk of incident total gallbladder disease/gallstone in adulthood.


Assuntos
Bancos de Espécimes Biológicos/estatística & dados numéricos , Doenças da Vesícula Biliar/etiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Medição de Risco/métodos , Fumar/efeitos adversos , Feminino , Seguimentos , Doenças da Vesícula Biliar/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Morbidade/tendências , Gravidez , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo , Reino Unido/epidemiologia
12.
Hereditas ; 158(1): 20, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134783

RESUMO

BACKGROUND: Craniosynostosis, defined as premature fusion of one or more cranial sutures, affects approximately 1 in every 2000-2500 live births. Sagittal craniosynostosis (CS), the most prevalent form of isolated craniosynostosis, is caused by interplay between genetic and perinatal environmental insults. However, the underlying details remain largely unknown. METHODS: The proband (a female monochorionic twin diagnosed with CS), her healthy co-twin sister and parents were enrolled. Obstetric history was extracted from medical records. Genetic screening was performed by whole exome sequencing (WES) and confirmed by Sanger sequencing. Functional annotation, conservation and structural analysis were predicted in public database. Phenotype data of Axin2 knockout mice was downloaded from The International Mouse Phenotyping Consortium (IMPC, http://www.mousephenotype.org ). RESULTS: Obstetric medical records showed that, except for the shared perinatal risk factors by the twins, the proband suffered additional persistent breech presentation and intrauterine growth restriction. We identified a heterozygous mutation of Axin2 (c.1181G > A, p.R394H, rs200899695) in monochorionic twins and their father, but not in the mother. This mutation is not reported in Asian population and results in replacement of Arg at residue 394 by His (p.R394H). Arg 394 is located at the GSK3ß binding domain of Axin2 protein, which is highly conserved across species. The mutation was predicted to be potentially deleterious by in silico analysis. Incomplete penetrance of Axin2 haploinsufficiency was found in female mice. CONCLUSIONS: Axin2 (c.1181G > A, p.R394H, rs200899695) mutation confers susceptibility and perinatal risk factors trigger the occurrence of sagittal craniosynostosis. Our findings provide a new evidence for the gene-environment interplay in understanding pathogenesis of craniosynostosis in Chinese population.


Assuntos
Proteína Axina/genética , Craniossinostoses/genética , Animais , Povo Asiático/genética , China , Feminino , Humanos , Camundongos , Camundongos Knockout , Mutação , Fatores de Risco , Gêmeos Monozigóticos , Sequenciamento do Exoma
13.
Ecotoxicol Environ Saf ; 208: 111433, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068977

RESUMO

Evidence from previous studies has shown that exposure to metals is associated with cardiovascular disease (CVD). However, the association between metal mixtures and CVD risk and the potential mechanisms in epidemiologic studies remain unclear. The data of 14,795 adults who participated in the U.S. National Health and Nutrition Examination Survey (NHANES) 1999-2016 were analyzed. Multivariate logistic regression was performed to investigate the associations between urinary metal levels and CVDs. Weighted quantile sum (WQS) regression was performed to examine the effects of mixed metals on CVDs. Multivariate linear regression and mediation analysis were conducted to explore the associations between metals and blood lipids. Urinary cadmium (Cd) was significantly associated with an increased total CVD risk and with individual CVD risk. The odds ratio (OR) for CVD in the highest quartile of the WQS index was 1.43 (95% confidence interval [CI]: 1.19, 1.71). One augmented urinary Cd concentration unit (Log10) was associated with a 0.93 mg/dL decrease in HDL cholesterol, a 1.34 mg/dL increase in LDL cholesterol and a 1.30 mg/dL increase in total cholesterol in the fully adjusted model. Mediation analysis showed that HDL cholesterol mediated 4.91% of the association between urinary Cd and the prevalence of CVD. Our findings suggest that urinary Cd and metal mixtures were significantly and positively associated with CVD. The downregulation of HDL cholesterol might play a significant role in mediating Cd exposure-associated CVD risk increases.


Assuntos
Cádmio/urina , Doenças Cardiovasculares/epidemiologia , HDL-Colesterol/sangue , Exposição Ambiental/estatística & dados numéricos , Adulto , Doenças Cardiovasculares/urina , Feminino , Humanos , Modelos Lineares , Lipídeos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Razão de Chances , Prevalência , Fatores de Risco
14.
FASEB J ; 33(6): 7427-7436, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998386

RESUMO

X-ray repair cross-complementing group 1 (Xrcc1), a key DNA repair gene, plays a vital role in maintaining genomic stability and is highly expressed in the early stages of spermatogenesis, but the exact functions remain elusive. Here we generated primordial germ cell-specific Xrcc1 knockout (cXrcc1-/-) mice to elucidate the effects of Xrcc1 on spermatogenesis. We demonstrated that Xrcc1 deficiency results in infertility in male mice due to impaired spermatogenesis. We found that cXrcc1-/- mice exhibited smaller size of testes as well as lower sperm concentration and motility than the wild-type mice. Mechanistically, we demonstrated that Xrcc1 deficiency in primordial germ cells induced elevated levels of reactive oxygen species, mitochondria dysfunction, apoptosis, and loss of stemness of spermatogonial stem cells (SSCs) in testes. In Xrcc1-deficienct SSCs, elevated oxidative stress and mitochondrial dysfunction could be partially reversed by treatment with the antioxidant N-acetylcysteine (NAC), whereas NAC treatment did not restore the fertility or ameliorate the apoptosis caused by loss of Xrcc1. Overall, our findings provided new insights into understanding the crucial role of Xrcc1 during spermatogenesis.-Xu, C., Xu, J., Ji, G., Liu, Q., Shao, W., Chen, Y., Gu, J., Weng, Z., Zhang, X., Wang, Y., Gu, A. Deficiency of X-ray repair cross-complementing group 1 in primordial germ cells contributes to male infertility.


Assuntos
Células Germinativas/metabolismo , Infertilidade Masculina/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Acetilcisteína/farmacologia , Animais , Apoptose , Feminino , Células Germinativas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Testículo/citologia , Testículo/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(45): E9655-E9664, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078374

RESUMO

Chronic obstructive pulmonary disease (COPD) has been linked to particulate matter (PM) exposure. Using transcriptomic analysis, we demonstrate that diesel exhaust particles, one of the major sources of particulate emission, down-regulated genes located in mitochondrial complexes I and V and induced experimental COPD in a mouse model. 1-Nitropyrene was identified as a major toxic component of PM-induced COPD. In the panel study, COPD patients were found to be more susceptible to PM than individuals with normal lung function due to an increased inflammatory response. Mechanistically, exposure to PM in human bronchial epithelial cells led to a decline in CCAAT/enhancer-binding protein alpha (C/EBPα), which triggered aberrant expression of NADH dehydrogenase genes and ultimately led to enhanced autophagy. ATG7-deficient mice, which have lower autophagy rates, were protected from PM-induced experimental COPD. Using metabolomics analysis, we further established that treatment with taurine and 3-methyladenine completely restored mitochondrial gene expression levels, thereby ameliorating the PM-induced emphysema. Our studies suggest a potential therapeutic intervention for the C/EBPα/mitochondria/autophagy axis in PM-induced COPD.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Material Particulado/farmacologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Taurina/uso terapêutico , Adenina/análogos & derivados , Adenina/farmacologia , Idoso , Animais , Autofagia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Genes Mitocondriais/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo
16.
Environ Toxicol ; 35(3): 377-384, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31705742

RESUMO

Sterol is synthesized from cholesterol which is from the hydrolysis of stored cholesteryl esters. The process of maintaining cholesterol homeostasis is regulated by SREBP2-STARD4. Lots of researches demonstrated that male steroidogenesis could be interfered by di-n-butyl phthalate (DBP) or monobutyl phthalate (MBP). However, mechanisms of MBP exposure in this process have not been uncovered clearly. The objectiveof this study was to explore roles of SREBP2 and STARD4 in cholesteryl estersynthesis stimulated by MBP in mouse Leydig tumor cells (MLTC-1). MLTC-1 exposedto 10-8, 10-7, 10-6, 10-5 M MBP showed that levels of cholestery ester were increased significantly at 10-7 M MBP. Besides, cholesteryl ester synthesis stimulated by MBP was down-regulate when STARD4 or SREBP2 were inhibited. Activity of SREBP2 binding to the promoter of STARD4 was increased after MBP exposure. This study suggests that MBP can increase cholesteryl ester synthesis through SREBP2-STARD4 signal pathway in MLTC-1 cells.


Assuntos
Ésteres do Colesterol/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Ftálicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Linhagem Celular Tumoral , Dibutilftalato/farmacologia , Regulação para Baixo/efeitos dos fármacos , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
17.
J Appl Toxicol ; 38(5): 696-704, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297590

RESUMO

Methamphetamine (Meth) is an illicit psychostimulant with high abuse potential and severe neurotoxicity. Recent studies have shown that dysfunctions in learning and memory induced by Meth may partially reveal the mechanisms of neuronal channelopathies. Kv2.1, the primary delayed rectifying potassium channel in neurons, is responsible for mediating apoptotic current surge. However, whether Kv2.1 is involved in Meth-mediated neural injury remains unknown. In the present study, the treatment of primary cultured hippocampal neurons with Meth indicated that Meth induced a time- and dose-dependent augmentation of Kv2.1 protein expression, accompanied by elevated cleaved-caspase 3 and declined bcl-2/bax ratio. The blockage of Kv2.1 with the inhibitor GxTx-1E or the knockdown of the channel noticeably abrogated the pro-apoptotic effects mediated by Meth, demonstrating the specific roles of Kv2.1 in Meth-mediated neural damage. Additionally, the p38 mitogen-activated protein kinase (MAPK) signaling was demonstrated to be involved in Meth-mediated Kv2.1 upregulation and in the subsequent pro-apoptotic effects, as treatment with a p38 MAPK inhibitor significantly attenuated Meth-mediated Kv2.1 upregulation and cell apoptosis. Of note, PRE-084, a sigma-1 receptor agonist, obviously attenuated Meth-induced upregulation of Kv2.1 expression, neural apoptosis and p38 MAPK activation. Taken together, these results reveal a novel mechanism involved in Meth-induced neural death with implications for therapeutic interventions for Meth users.


Assuntos
Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metanfetamina/toxicidade , Neurônios/efeitos dos fármacos , Canais de Potássio Shab/efeitos dos fármacos , Animais , Western Blotting , Relação Dose-Resposta a Droga , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Nature ; 474(7353): 645-8, 2011 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-21623370

RESUMO

The four-chambered mammalian heart develops from two fields of cardiac progenitor cells distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary outflow tract but not a right ventricle, the existence and function of SHF-like cells in these species has remained a topic of speculation. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss-of-function studies in zebrafish, a lower vertebrate with a single ventricle, that latent TGF-ß binding protein 3 (ltbp3) transcripts mark a field of cardiac progenitor cells with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3(+) cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the outflow tract and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGF-ß ligands, zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of cardiac progenitor cells in both fields. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3(+) cells due to compromised progenitor proliferation. Furthermore, small-molecule inhibition of TGF-ß signalling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGF-ß type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3-TGF-ß signalling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.


Assuntos
Coração/embriologia , Proteínas de Ligação a TGF-beta Latente/metabolismo , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Animais , Anormalidades Cardiovasculares/embriologia , Linhagem da Célula , Técnicas de Silenciamento de Genes , Proteína Homeobox Nkx-2.5 , Dados de Sequência Molecular , Miocárdio/citologia , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Development ; 140(13): 2755-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23698347

RESUMO

Multiciliated cells (MCCs) possess multiple motile cilia and are distributed throughout the vertebrate body, performing important physiological functions by regulating fluid movement in the intercellular space. Neither their function during organ development nor the molecular mechanisms underlying multiciliogenesis are well understood. Although dysregulation of members of the miR-34 family plays a key role in the progression of various cancers, the physiological function of miR-34b, especially in regulating organ formation, is largely unknown. Here, we demonstrate that miR-34b expression is enriched in kidney MCCs and the olfactory placode in zebrafish. Inhibiting miR-34b function using morpholino antisense oligonucleotides disrupted kidney proximal tubule convolution and the proper distribution of distal transporting cells and MCCs. Microarray analysis of gene expression, cilia immunostaining and a fluid flow assay revealed that miR-34b is functionally required for the multiciliogenesis of MCCs in the kidney and olfactory placode. We hypothesize that miR-34b regulates kidney morphogenesis by controlling the movement and distribution of kidney MCCs and fluid flow. We found that cmyb was genetically downstream of miR-34b and acted as a key regulator of multiciliogenesis. Elevated expression of cmyb blocked membrane docking of centrioles, whereas loss of cmyb impaired centriole multiplication, both of which resulted in defects in the formation of ciliary bundles. Thus, miR-34b serves as a guardian to maintain the proper level of cmyb expression. In summary, our studies have uncovered an essential role for miR-34b-Cmyb signaling during multiciliogenesis and kidney morphogenesis.


Assuntos
MicroRNAs/fisiologia , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Rim/embriologia , Rim/metabolismo , MicroRNAs/genética , Reação em Cadeia da Polimerase , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Blood ; 124(8): 1320-30, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24990885

RESUMO

Neutrophils play critical roles in vertebrate innate immune responses. As an emerging regulator in normal myelopoiesis, the precise roles of microRNA in the development of neutrophils have yet to be clarified. Using zinc-finger nucleases, we have successfully generated heritable mutations in miR-142a and miR-142b and showed that hematopoietic-specific miR-142-3p is completely deleted in miR-142 double mutant zebrafish. The lack of miR-142-3p resulted in aberrant reduction and hypermaturation of neutrophils in definitive myelopoiesis, as well as impaired inflammatory migration of neutrophils in the fetal stage. Furthermore, the adult myelopoiesis in the miR-142-3p-deficient zebrafish was also affected, producing irregular hypermature neutrophils with increased cell size and a decreased nucleocytoplasmic ratio. Additionally, miR-142-3p-deficient zebrafish are expected to develop a chronic failure of myelopoiesis with age. Transcriptome analysis showed an aberrant activation of the interferon γ (IFN-γ) signaling pathway in myelomonocytes after miR-142-3p deletion. We found that the reduced number and hypermaturation of neutrophils caused by loss of miR-142-3p was mainly mediated by the abnormally activated IFN-γ signaling, especially the upregulation of stat1a and irf1b. Taken together, we uncovered a novel role of miR-142-3p in maintaining normal neutrophil development and maturation.


Assuntos
MicroRNAs/metabolismo , Mielopoese/fisiologia , Neutrófilos/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo , Animais , Deleção de Genes , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , MicroRNAs/genética , Neutrófilos/citologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transcriptoma , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA