RESUMO
Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.
Assuntos
Resistência à Seca , Malus , Proteínas de Plantas , Fatores de Transcrição , Ubiquitinação , Resistência à Seca/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Pears are among the most important temperate fruit trees in the world, with significant research efforts increasing over the last years. However, available omics data for pear cannot be easily and quickly retrieved to enable further studies using these biological data. DESCRIPTION: Here, we present a publicly accessible multi-omics pear resource platform, the Pear Genomics Database (PGDB). We collected and collated data on genomic sequences, genome structure, functional annotation, transcription factor predictions, comparative genomics, and transcriptomics. We provide user-friendly functional modules to facilitate querying, browsing and usage of these data. The platform also includes basic and useful tools, including JBrowse, BLAST, phylogenetic tree building, and additional resources providing the possibility for bulk data download and quick usage guide services. CONCLUSIONS: The Pear Genomics Database (PGDB, http://pyrusgdb.sdau.edu.cn ) is an online data analysis and query resource that integrates comprehensive multi-omics data for pear. This database is equipped with user-friendly interactive functional modules and data visualization tools, and constitutes a convenient platform for integrated research on pear.
Assuntos
Pyrus , Pyrus/genética , Multiômica , Filogenia , Bases de Dados Factuais , GenômicaRESUMO
Malic acid accumulation in the vacuole largely determines acidity and perception of sweetness of apple. It has long been observed that reduction in malate level is associated with increase in ethylene production during the ripening process of climacteric fruits, but the molecular mechanism linking ethylene to malate reduction is unclear. Here, we show that ethylene-modulated WRKY transcription factor 31 (WRKY31)-Ethylene Response Factor 72 (ERF72)-ALUMINUM ACTIVATED MALATE TRANSPORTER 9 (Ma1) network regulates malate accumulation in apple fruit. ERF72 binds to the promoter of ALMT9, a key tonoplast transporter for malate accumulation of apple, transcriptionally repressing ALMT9 expression in response to ethylene. WRKY31 interacts with ERF72, suppressing its transcriptional inhibition activity on ALMT9. In addition, WRKY31 directly binds to the promoters of ERF72 and ALMT9, transcriptionally repressing and activating ERF72 and ALMT9, respectively. The expression of WRKY31 decreases in response to ethylene, lowering the transcription of ALMT9 directly and via its interactions with ERF72. These findings reveal that the regulatory complex WRKY31 forms with ERF72 responds to ethylene, linking the ethylene signal to ALMT9 expression in reducing malate transport into the vacuole during fruit ripening.
Assuntos
Malus , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Alumínio/metabolismo , Frutas/genética , Frutas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Sugars are essential regulatory molecules involved in plant growth and development and defense response. Although the relationship between sugars and disease resistance has been widely discussed, the underlying molecular mechanisms remain unexplored. Ring rot caused by Botryosphaeria dothidea (B. dothidea), which severely affects fruit quality and yield, is a destructive disease of apples (Malus domestica Borkh.). The present study found that the degree of disease resistance in apple fruit was closely related to glucose content. Therefore, the gene encoding a hexokinase, MdHXK1, was isolated from the apple cultivar 'Gala', and characterized during the defense response. Overexpression of MdHXK1 enhanced disease resistance in apple calli, leaves and fruits by increasing the expression levels of genes related to salicylate (SA) synthesis (PHYTOALEXIN DEFICIENT 4, PAD4; PHENYLALANINE AMMONIA-LYASE, PAL; and ENHANCED DISEASE SUSCEPTIBILITY 1, EDS1) and signaling (PR1; PR5; and NONEXPRESSER OF PR GENES 1, NPR1) as well as increasing the superoxide (O2- ) production rate and the hydrogen peroxide (H2 O2 ) content. Overall, the study provides new insights into the MdHXK1-mediated molecular mechanisms by which glucose signaling regulates apple ring rot resistance.
Assuntos
Ascomicetos , Malus , Ascomicetos/fisiologia , Resistência à Doença/genética , Glucose/metabolismo , Malus/genética , Malus/metabolismo , Doenças das Plantas/genéticaRESUMO
Sugars are involved in plant growth, fruit quality, and signaling perception. Therefore, understanding the mechanisms involved in soluble sugar accumulation is essential to understand fruit development. Here, we report that MdPFPß, a pyrophosphate-dependent phosphofructokinase gene, regulates soluble sugar accumulation by enhancing the photosynthetic performance and sugar-metabolizing enzyme activities in apple (Malus domestica Borkh.). Biochemical analysis revealed that a basic helix-loop-helix (bHLH) transcription factor, MdbHLH3, binds to the MdPFPß promoter and activates its expression, thus promoting soluble sugar accumulation in apple fruit. In addition, MdPFPß overexpression in tomato influenced photosynthesis and carbon metabolism in the plant. Furthermore, we determined that MdbHLH3 increases photosynthetic rates and soluble sugar accumulation in apple by activating MdPFPß expression. Our results thus shed light on the mechanism of soluble sugar accumulation in apple leaves and fruit: MdbHLH3 regulates soluble sugar accumulation by activating MdPFPß gene expression and coordinating carbohydrate allocation.
Assuntos
Malus , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carboidratos , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , Malus/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismoRESUMO
BACKGROUND: MADS-box transcription factors (TFs) are the key regulators of multiple developmental processes in plants; among them, a chrysanthemum MADS-box TF CmANR1 has been isolated and described as functioning in root development in response to high nitrate concentration signals. However, how CmANR1 affects root and shoot development remains unclear. RESULTS: We report that CmANR1 plays a positive role in root system development in chrysanthemum throughout the developmental stages of in vitro tissue cultures. Metabolomics combined with transcriptomics assays show that CmANR1 promotes robust root system development by facilitating nitrate assimilation, and influencing the metabolic pathways of amino acid, glycolysis, and the tricarboxylic acid cycle (TCA) cycle. Also, we found that the expression levels of TFs associated with the nitrate signaling pathways, such as AGL8, AGL21, and LBD29, are significantly up-regulated in CmANR1-transgenic plants relative to the wild-type (WT) control; by contrast, the expression levels of RHD3-LIKE, LBD37, and GATA23 were significantly down-regulated. These results suggest that these nitrate signaling associated TFs are involved in CmANR1-modulated control of root development. In addition, CmANR1 also acts as a positive regulator to control shoot growth and development. CONCLUSIONS: These findings provide potential mechanisms of MADS-box TF CmANR1 modulation of root and shoot development, which occurs by regulating a series of nitrate signaling associated TFs, and influencing the metabolic pathways of amino acid and glycolysis, as well as TCA cycle and nitrate assimilation.
Assuntos
Chrysanthemum/genética , Genes de Plantas , Proteínas de Domínio MADS/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Chrysanthemum/crescimento & desenvolvimento , Ciclo do Ácido Cítrico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicólise , Proteínas de Domínio MADS/metabolismo , Metabolômica , Modelos Biológicos , Nitratos/metabolismo , Fotossíntese , Análise de Componente Principal , Transdução de Sinais , Transcriptoma/genéticaRESUMO
Changes in carbohydrates and organic acids largely determine the palatability of edible tissues of horticulture crops. Elucidating the potential molecular mechanisms involved in the change in carbohydrates and organic acids, and their temporal and spatial crosstalk are key steps in understanding fruit developmental processes. Here, we used apple (Malus domestica Borkh.) as research materials and found that MdbHLH3, a basic helix-loop-helix transcription factor (bHLH TF), modulates the accumulation of malate and carbohydrates. Biochemical analyses demonstrated that MdbHLH3 directly binds to the promoter of MdcyMDH that encodes an apple cytosolic NAD-dependent malate dehydrogenase, activating its transcriptional expression, thereby promoting malate accumulation in apple fruits. Additionally, MdbHLH3 overexpression increased the photosynthetic capacity and carbohydrate levels in apple leaves and also enhanced the carbohydrate accumulation in fruits by adjusting carbohydrate allocation from sources to sinks. Overall, our findings provide new insights into the mechanism of how the bHLH TF MdbHLH3 modulates the fruit quality. It directly regulates the expression of cytosolic malate dehydrogenase MdcyMDH to coordinate carbohydrate allocation and malate accumulation in apple.
Assuntos
Malus , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Frutose , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malatos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Excessive application of nitrate, an essential macronutrient and a signal regulating diverse physiological processes, decreases malate accumulation in apple (Malus domestica) fruit, but the underlying mechanism remains poorly understood. Here, we show that an apple BTB/TAZ protein, MdBT2, is involved in regulating malate accumulation and vacuolar pH in response to nitrate. In vitro and in vivo assays indicate that MdBT2 interacts directly with and ubiquitinates a bHLH transcription factor, MdCIbHLH1, via the ubiquitin/26S proteasome pathway in response to nitrate. This ubiquitination results in the degradation of MdCIbHLH1 protein and reduces the transcription of MdCIbHLH1-targeted genes involved in malate accumulation and vacuolar acidification, including MdVHA-A, which encodes a vacuolar H+-ATPase, and MdVHP1, which encodes a vacuolar H+-pyrophosphatase, as well as MdALMT9, which encodes an aluminum-activated malate transporter. A series of transgenic analyses in apple materials including fruits, plantlets, and calli demonstrate that MdBT2 controls nitrate-mediated malate accumulation and vacuolar pH at least partially, if not completely, via regulating the MdCIbHLH1 protein level. Taken together, these findings reveal that MdBT2 regulates the stability of MdCIbHLH1 via ubiquitination in response to nitrate, which in succession transcriptionally reduces the expression of malate-associated genes, thereby controlling malate accumulation and vacuolar acidification in apples under high nitrate supply.
Assuntos
Malatos/metabolismo , Nitratos/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
Climate-driven phenological change across local spatial gradients leads to leaf shape variation. At higher elevations, leaves of broadleaf species tend to become narrower, but the underlying molecular mechanism is largely unknown. In this study, a series of morphometric analyses and biochemical assays, combined with functional identification in apple, were performed. We show that the decrease in apple leaf width with increasing altitude is controlled by a basic/helix-loop-helix transcription factor (bHLH TF), MdbHLH3. The MdbHLH3-overexpressing lines have a lower transcript abundance of MdPIN1 encoding an auxin efflux carrier but a higher transcript abundance of MdGH3-2 encoding a putative auxin amido conjugate synthase, resulting in a lower free auxin concentration; feeding the transgenic leaves with exogenous auxin partially restores leaf width. MdbHLH3 transcriptionally suppresses and activates MdPIN1 and MdGH3-2, respectively, by specifically binding to their promoters. This alters auxin homeostasis and transport, consequently leading to changes in leaf shape. These findings suggest that the bHLH TF MdbHLH3 directly modulates auxin signaling in controlling leaf shape in response to local spatial gradients in apple.
Assuntos
Malus , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus/genética , Malus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
MAIN CONCLUSION: MdPUB29 is a positive regulator of the defense response to the fungal pathogen Botryosphaeria dothidea possibly by directly regulating the salicylic acid (SA) content as well as SA synthesis-related and signaling-related gene transcription. In plants, ubiquitin E3 ligases containing a U-box domain (PUBs, Plant U-box E3 ubiquitin ligase) have been identified as key regulators of fundamental cellular processes, such as cellular growth, development, and apoptosis, as well as biotic and abiotic stress responses. However, the function of PUBs in apple ring rot remains elusive. Here, we isolated the U-box E3 ligase MdPUB29 from the apple cultivar 'Royal Gala' and characterized its function in plant pathogen defense against Botryosphaeria dothidea. qRT-PCR showed that the expression of MdPUB29 was significantly induced in apple fruits after B. dothidea infection. Overexpression of the MdPUB29 gene in apple calli increased the resistance to B. dothidea infection. In contrast, silencing MdPUB29 in apple calli resulted in reduced resistance. Ectopic expression of MdPUB29 in Arabidopsis also exhibited enhanced resistance to B. dothidea infection compared to that of the wild-type (Col) control. In addition, it was found that the increase of plant pathogen defense was correlated with the increased salicylic acid (SA) content, as well as SA synthesis-related and signaling-related gene transcription in comparison to the wild type. We elucidated the mechanism by which MdPUB29 elevates plant pathogen defense against B. dothidea possibly by regulating the SA pathway.
Assuntos
Ascomicetos , Malus/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética , Clorofila/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Malus/enzimologia , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ácido Salicílico/metabolismo , Ubiquitina-Proteína Ligases/fisiologiaRESUMO
BACKGROUND: DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS: Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS: Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.
Assuntos
Metilação de DNA , Pyrus , Humanos , Frutas/genética , Frutas/metabolismo , Pyrus/genética , Domesticação , Epigênese Genética , Proteínas de Ligação ao Cálcio/genética , Transativadores/genéticaRESUMO
FERONIA (FER) is a membrane-localized receptor-like kinase that plays pivotal roles in male and female gametophyte recognition, hormone signaling crosstalk, and biotic and abiotic responses. Most reports focus on the functions of FER in model plant Arabidopsis thaliana. However, the functions of FER homologs have not been deeply investigated in apple (Malus domestica), an important economic fruit crop distributed worldwide, especially in China. In this study, we identified an apple homolog of Arabidopsis FER, named MdFER (MDP0000390677). The two proteins encoded by AtFER and MdFER share similar domains: an extracellular malectin-like domain, a transmembrane domain, and an intracellular kinase domain. MdFER was further proven to localize to the plasma membrane in the epidermal cells of Nicotiana benthamiana. MdFER was widely expressed in different apple tissues, but the highest expression was found in roots. In addition, expression of MdFER was significantly induced by treatment with abscisic acid (ABA) and salt (NaCl). Overexpressing MdFER dramatically improved the resistance to salt stress and reduced the sensitivity to ABA in apple callus, while suppressing MdFER expression showed contrary effects. Furthermore, ectopic expression of MdFER in Arabidopsis significantly increased the salt tolerance and reduced the sensitivity to ABA. In addition, under salt stress and ABA treatment, Arabidopsis with highly expressed MdFER accumulated less reactive oxygen species (ROS), and the enzymatic activity of two ROS scavengers, superoxide dismutase and catalase, was higher compared with that of wild type (WT). Our work proves that MdFER positively regulates salt tolerance and negatively regulates ABA sensitivity in apple, which enriched the functions of FER in different plant species.
RESUMO
MYB transcription factors (TFs) participate in many biological processes. However, the molecular mechanisms by which MYB TFs affect plant resistance to apple ring rot remain poorly understood. Here, the R2R3-MYB gene MdMYB73 was cloned from "Royal Gala" apples and functionally characterized as a positive regulator of the defense response to Botryosphaeria dothidea. qRT-PCR and GUS staining demonstrated that MdMYB73 was strongly induced in apple fruits and transgenic calli after inoculation with B. dothidea. MdMYB73 overexpression improved resistance to B. dothidea in apple calli and fruits, while MdMYB73 suppression weakened. Increased resistance to B. dothidea was also observed in MdMYB73-expressing Arabidopsis thaliana. Interestingly, salicylic acid (SA) contents and the expression levels of genes related with SA synthesis and signaling were greater in MdMYB73-overexpressing plant materials compared to wild-type controls after inoculation, suggesting that MdMYB73 might enhance resistance to B. dothidea via the SA pathway. Finally, we discovered that MdMYB73 interacts with MdWRKY31, a positive regulator of B. dothidea. Together, MdWRKY31 and MdMYB73 enhanced B. dothidea resistance in apples. Our results clarify the mechanisms by which MdMYB73 improves resistance to B. dothidea and suggest that resistance may be affected by regulating the SA pathway.
Assuntos
Ascomicetos/fisiologia , Malus/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Ácido Salicílico/imunologia , Fatores de Transcrição/imunologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genéticaRESUMO
Basic helix-loop-helix (bHLH) domain-containing transcription factors are known for their roles in regulating various plant growth and developmental processes. Previously, we showed that MdbHLH3 from apple (Malus domestica) has multiple functions, modulating both anthocyanin biosynthesis and cell acidification. Here, we show that MdbHLH3 also regulates ethylene biosynthesis and leaf senescence by promoting the expression of dehydratase-enolase-phosphatase complex 1 (MdDEP1). Therefore, we propose a model whereby MdbHLH3 acts as a crucial factor that modulates anthocyanin biosynthesis and cell acidification in addition to fruit ripening and leaf senescence by regulating distinct target genes.
RESUMO
As an important primary metabolite, malate plays a key role in regulating osmotic pressure, pH homeostasis, stress tolerance, and fruit quality of apple. The R2R3-MYB transcription factor (TF) MdMYB73 was identified as a protein that plays a critical role in determining malate accumulation and vacuolar acidification by directly regulating the transcription of aluminum-activated malate transporter 9 (MdALMT9), vacuolar ATPase subunit A (MdVHA-A), and vacuolar pyrophosphatase 1 (MdVHP1) in apple. In addition, the bHLH TF MdCIbHLH1 interacts with MdMYB73 and enhances the transcriptional activity of MdMYB73. Our previous studies demonstrated that the BTB-BACK-TAZ domain protein MdBT2 can degrade MdCIbHLH1 to influence malate accumulation and vacuolar acidification. However, the potential upstream regulators of MdMYB73 are currently unknown. In this study, we found that MdBT2 directly interacts with and degrades MdMYB73 through the ubiquitin/26S proteasome pathway to regulate malate accumulation and vacuolar acidification. A series of functional assays with apple calli and fruit showed that MdBT2 controls malate accumulation and vacuolar acidification in an MdMYB73-dependent manner. Overall, our findings shed light on the mechanism by which the BTB-BACK-TAZ domain protein MdBT2 regulates malate accumulation and vacuolar acidification by targeting MdMYB73 and MdCIbHLH1 for ubiquitination in apple. This information may help guide traditional breeding programs and fruit tree molecular breeding, and lead to improvements in fruit quality and stress tolerance.
RESUMO
Ethylene response factor (ERF) is a plant-specific transcription factor involved in many biological processes including root formation, hypocotyl elongation, fruit ripening, organ senescence and stress responses, as well as fruit quality formation. However, its underlying mechanism in plant pathogen defense against Botryosphaeria dothidea (B. dothidea) remains poorly understood. Here, we isolate MdERF11, an apple nucleus-localized ERF transcription factor, from apple cultivar 'Royal Gala'. qRT-PCR assays show that the expression of MdERF11 is significantly induced in apple fruits after B. dothidea infection. Overexpression of MdERF11 gene in apple calli significantly increases the resistance to B.dothidea infection, while silencing MdERF11 in apple calli results in reduced resistance. Ectopic expression of MdERF11 in Arabidopsis also exhibits enhanced resistance to B. dothidea infection compared to that of wild type. Infections in apple calli and Arabidopsis leaves by B. dothidea respectively cause an increase in endogenous levels of salicylic acid (SA) followed by induction of SA synthesis-related and signaling-related gene expression. Taken together, these findings illustrate a potential mechanism by which MdERF11 elevates plant pathogen defense against B. dothidea by regulating SA synthesis pathway.
Assuntos
Ascomicetos/fisiologia , Malus/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Resistência à Doença/genética , Malus/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Plant root systems are essential for many physiological processes, including water and nutrient absorption. MADS-box transcription factor (TF) genes have been characterized as the important regulators of root development in plants; however, the underlying mechanism is largely unknown, including chrysanthemum. Here, it was found that the overexpression of CmANR1, a chrysanthemum MADS-box TF gene, promoted both adventitious root (AR) and lateral root (LR) development in chrysanthemum. Whole transcriptome sequencing analysis revealed a series of differentially expressed unigenes (DEGs) in the roots of CmANR1-transgenic chrysanthemum plants compared to wild-type plants. Functional annotation of these DEGs by alignment with Gene Ontology (GO) terms and biochemical pathway Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that CmANR1 TF exhibited "DNA binding" and "catalytic" activity, as well as participated in "phytohormone signal transduction". Both chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) and gel electrophoresis mobility shift assays (EMSA) indicated the direct binding of CmPIN2 to the recognition site CArG-box motif by CmANR1. Finally, a firefly luciferase imaging assay demonstrated the transcriptional activation of CmPIN2 by CmANR1 in vivo. Overall, our results provide novel insights into the mechanisms of MADS-box TF CmANR1 modulation of both AR and LR development, which occurs by directly regulating auxin transport gene CmPIN2 in chrysanthemum.