Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nature ; 630(8018): 847-852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839959

RESUMO

The recent discovery of superconductivity in La3Ni2O7-δ under high pressure with a transition temperature around 80 K (ref. 1) has sparked extensive experimental2-6 and theoretical efforts7-12. Several key questions regarding the pairing mechanism remain to be answered, such as the most relevant atomic orbitals and the role of atomic deficiencies. Here we develop a new, energy-filtered, multislice electron ptychography technique, assisted by electron energy-loss spectroscopy, to address these critical issues. Oxygen vacancies are directly visualized and are found to primarily occupy the inner apical sites, which have been proposed to be crucial to superconductivity13,14. We precisely determine the nanoscale stoichiometry and its correlation to the oxygen K-edge spectra, which reveals a significant inhomogeneity in the oxygen content and electronic structure within the sample. The spectroscopic results also reveal that stoichiometric La3Ni2O7 has strong charge-transfer characteristics, with holes that are self-doped from Ni sites into O sites. The ligand holes mainly reside on the inner apical O and the planar O, whereas the density on the outer apical O is negligible. As the concentration of O vacancies increases, ligand holes on both sites are simultaneously annihilated. These observations will assist in further development and understanding of superconducting nickelate materials. Our imaging technique for quantifying atomic deficiencies can also be widely applied in materials science and condensed-matter physics.

2.
Nat Mater ; 23(8): 1077-1084, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589541

RESUMO

Robust ferroelectricity in nanoscale fluorite oxide-based thin films enables promising applications in silicon-compatible non-volatile memories and logic devices. However, the polar orthorhombic (O) phase of fluorite oxides is a metastable phase that is prone to transforming into the ground-state non-polar monoclinic (M) phase, leading to macroscopic ferroelectric degradation. Here we investigate the reversibility of the O-M phase transition in ZrO2 nanocrystals via in situ visualization of the martensitic transformation at the atomic scale. We reveal that the reversible shear deformation pathway from the O phase to the monoclinic-like (M') state, a compressive-strained M phase, is protected by 90° ferroelectric-ferroelastic switching. Nevertheless, as the M' state gradually accumulates localized strain, a critical tensile strain can pin the ferroelastic domain, resulting in an irreversible M'-M strain relaxation and the loss of ferroelectricity. These findings demonstrate the key role of ferroelastic switching in the reversibility of phase transition and also provide a tensile-strain threshold for stabilizing the metastable ferroelectric phase in fluorite oxide thin films.

3.
Nat Mater ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589543

RESUMO

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

4.
Nano Lett ; 24(18): 5618-5624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661108

RESUMO

The oriented attachment (OA) of nanoparticles (NPs) is an important crystal growth mechanism in many materials. However, a comprehensive understanding of the atomic-scale alignment and attachment processes is still lacking. We conducted in situ atomic resolution studies using high-resolution transmission electron microscopy to reveal how two Pt NPs coalesce into a single particle via OA, which involves the formation of atomic-scale links and a grain boundary (GB) between the NPs, as well as GB migration. Density functional theory calculations showed that the system energy changes as a function of the number of disconnections during the coalescence process. Additionally, the formation and annihilation processes of disconnection are always accompanied by the cooperative reorientation motion of atoms. These results further elucidate the growth mechanism of OA at the atomic scale, providing microscopic insights into OA dynamics and a framework for the development of processing strategies for nanocrystalline materials.

5.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842462

RESUMO

The aggravated mechanical and structural degradation of layered oxide cathode materials upon high-voltage charging invariably causes fast capacity fading, but the underlying degradation mechanisms remain elusive. Here we report a new type of mechanical degradation through the formation of a kink band in a Mg and Ti co-doped LiCoO2 cathode charged to 4.55 V (vs Li/Li+). The local stress accommodated by the kink band can impede crack propagation, improving the structural integrity in a highly delithiated state. Additionally, machine-learning-aided atomic-resolution imaging reveals that the formation of kink bands is often accompanied by the transformation from the O3 to O1 phase, which is energetically favorable as demonstrated by first-principles calculations. Our results provide new insights into the mechanical degradation mechanism of high-voltage LiCoO2 and the coupling between electrochemically triggered mechanical failures and structural transition, which may provide valuable guidance for enhancing the electrochemical performance of high-voltage layered oxide cathode materials for lithium-ion batteries.

6.
Nano Lett ; 24(28): 8587-8594, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38967395

RESUMO

Single-unit cell (1 UC) FeSe interfaced with TiOx or FeOx exhibits significantly enhanced superconductivity compared to that of bulk FeSe, with interfacial electron-phonon coupling (EPC) playing a crucial role. However, the reduced dimensionality in 1 UC FeSe, which may drive superconducting fluctuations, complicates our understanding of the enhancement mechanisms. We construct a new superconducting interface, 1 UC FeSe/SrVO3/SrTiO3. Here, the itinerant electrons of highly metallic SrVO3 films can screen all high-energy Fuchs-Kliewer phonons, including those of SrTiO3, making it the first FeSe/oxide system with screened interfacial EPC while maintaining the 1 UC FeSe thickness. Despite comparable doping levels, the heavily electron-doped 1 UC FeSe/SrVO3 exhibits a pairing temperature (Tg ∼ 48 K) lower than those of FeSe/SrTiO3 and FeSe/LaFeO3. Our findings disentangle the contributions of interfacial EPC from dimensionality in terms of enhancing Tg in FeSe/oxide interfaces, underscoring the critical importance of interfacial EPC. This FeSe/VOx interface also provides a platform for studying interfacial superconductivity.

7.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743874

RESUMO

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

8.
BMC Bioinformatics ; 25(1): 120, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515026

RESUMO

BACKGROUND: Whole genome variants offer sufficient information for genetic prediction of human disease risk, and prediction of animal and plant breeding values. Many sophisticated statistical methods have been developed for enhancing the predictive ability. However, each method has its own advantages and disadvantages, so far, no one method can beat others. RESULTS: We herein propose an Ensemble Learning method for Prediction of Genetic Values (ELPGV), which assembles predictions from several basic methods such as GBLUP, BayesA, BayesB and BayesCπ, to produce more accurate predictions. We validated ELPGV with a variety of well-known datasets and a serious of simulated datasets. All revealed that ELPGV was able to significantly enhance the predictive ability than any basic methods, for instance, the comparison p-value of ELPGV over basic methods were varied from 4.853E-118 to 9.640E-20 for WTCCC dataset. CONCLUSIONS: ELPGV is able to integrate the merit of each method together to produce significantly higher predictive ability than any basic methods and it is simple to implement, fast to run, without using genotype data. is promising for wide application in genetic predictions.


Assuntos
Genoma , Melhoramento Vegetal , Animais , Humanos , Genótipo , Genômica , Aprendizado de Máquina , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Teorema de Bayes
9.
J Am Chem Soc ; 146(28): 19327-19336, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976776

RESUMO

An in situ formed IrOx (x ≤ 2) layer driven by anodic bias serves as the essential active site of Ir-based materials for oxygen evolution reaction (OER) electrocatalysis. Once being confined to atomic thickness, such an IrOx layer possesses both a favorable ligand effect and maximized active Ir sites with a lower O-coordination number. However, limited by a poor understanding of surface reconstruction dynamics, obtaining atomic layers of IrOx remains experimentally challenging. Herein, we report an idea of material design using intermetallic IrVMn nanoparticles to induce in situ formation of an ultrathin IrOx layer (O-IrVMn/IrOx) to enable the ligand effect for achieving superior OER electrocatalysis. Theoretical calculations predict that a strong electronic interaction originating from an orderly atomic arrangement can effectively hamper the excessive leaching of transition metals, minimizing vacancies for oxygen coordination. Linear X-ray absorption near edge spectra analysis, extended X-ray absorption fine structure fitting outcomes, and X-ray photoelectron spectroscopy collectively confirm that Ir is present in lower oxidation states in O-IrVMn/IrOx due to the presence of unsaturated O-coordination. Consequently, the O-IrVMn/IrOx delivers excellent acidic OER performances with an overpotential of only 279 mV at 10 mA cm-2 and a high mass activity of 2.3 A mg-1 at 1.53 V (vs RHE), exceeding most Ir-based catalysts reported. Moreover, O-IrVMn/IrOx also showed excellent catalytic stability with only 0.05 at. % Ir dissolution under electrochemical oxidation, much lower than that of disordered D-IrVMn/IrOx (0.20 at. %). Density functional theory calculations unravel that the intensified ligand effect optimizes the adsorption energies of multiple intermediates involved in the OER and stabilizes the as-formed catalytic IrOx layer.

10.
J Am Chem Soc ; 146(25): 17487-17494, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38865676

RESUMO

The redox transition between iron and its oxides is of the utmost importance in heterogeneous catalysis, biological metabolism, and geological evolution. The structural characteristics of this reaction may vary based on surrounding environmental conditions, giving rise to diverse physical scenarios. In this study, we explore the atomic-scale transformation of nanosized Fe3O4 under ambient-pressure H2 gas using in-situ environmental transmission electron microscopy. Our results reveal that the internal solid-state reactions dominated by iron diffusion are coupled with the surface reactions involving gaseous O or H species. During reduction, we observe two competitive reduction pathways, namely Fe3O4 → FeO → Fe and Fe3O4 → Fe. An intermediate phase with vacancy ordering is observed during the disproportionation reaction of Fe2+ → Fe0 + Fe3+, which potentially alleviates stress and facilitates ion migration. As the temperature decreases, an oxidation process occurs in the presence of environmental H2O and trace amounts of O2. A direct oxidation of Fe to Fe3O4 occurs in the absence of the FeO phase, likely corresponding to a change in the water vapor content in the atmosphere. This work elucidates a full dynamical scenario of iron redox under realistic conditions, which is critical for unraveling the intricate mechanisms governing the solid-solid and solid-gas reactions.

11.
J Am Chem Soc ; 146(14): 9721-9727, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556809

RESUMO

The volumetric density of the metal atomic site is decisive to the operating efficiency of the photosynthetic nanoreactor, yet its rational design and synthesis remain a grand challenge. Herein, we report a shell-regulating approach to enhance the volumetric density of Co atomic sites onto/into multishell ZnxCd1-xS for greatly improving CO2 photoreduction activity. We first establish a quantitative relation between the number of shell layers, specific surface areas, and volumetric density of atomic sites on multishell ZnxCd1-xS and conclude a positive relation between photosynthetic performance and the number of shell layers. The triple-shell ZnxCd1-xS-Co1 achieves the highest CO yield rate of 7629.7 µmol g-1 h-1, superior to those of the double-shell ZnxCd1-xS-Co1 (5882.2 µmol g-1 h-1) and single-shell ZnxCd1-xS-Co1 (4724.2 µmol g-1 h-1). Density functional theory calculations suggest that high-density Co atomic sites can promote the mobility of photogenerated electrons and enhance the adsorption of Co(bpy)32+ to increase CO2 activation (CO2 → CO2* → COOH* → CO* → CO) via the S-Co-bpy interaction, thereby enhancing the efficiency of photocatalytic CO2 reduction.

12.
J Am Chem Soc ; 146(7): 4433-4443, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329948

RESUMO

Potassium-sulfur (K-S) batteries are severely limited by the sluggish kinetics of the solid-phase conversion of K2S3/K2S2 to K2S, the rate-determining and performance-governing step, which urgently requires a cathode with facilitated sulfur accommodation and improved catalytic efficiency. To this end, we leverage the orbital-coupling approach and herein report a strong d-π coupling catalytic configuration of single-atom Co anchored between two alkynyls of graphdiyne (Co-GDY). The d-π orbital coupling of the Co-C4 moiety fully redistributes electrons two-dimensionally across the GDY, and as a result, drastically accelerates the solid-phase K2S3/K2S2 to K2S conversion and enhances the adsorption of sulfur species. Applied as the cathode, the S/Co-GDY delivered a record-high rate performance of 496.0 mAh g-1 at 5 A g-1 in K-S batteries. In situ and ex situ characterizations coupling density functional theory (DFT) calculations rationalize how the strong d-π orbital coupling of Co-C4 configuration promotes the reversible solid-state transformation kinetics of potassium polysulfide for high-performance K-S batteries.

13.
Prostate ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031050

RESUMO

BACKGROUND: There are no population-level studies assessing 18F-fluciclovine (fluciclovine) utilization of Positron emission tomography/computed tomography (PET/CT) for biochemically recurrent prostate cancer (PC). We assessed fluciclovine PET/CT in the Veterans Affairs Health Care System. METHODS: Of 1153 men with claims suggesting receipt of fluciclovine PET/CT, we randomly reviewed charts of 300 who indeed underwent fluciclovine PET/CT. The primary outcome was fluciclovine PET/CT result (positive or negative). Comparison among groups stratified by androgen deprivation therapy (ADT) (yes vs. no) and prostate-specific antigen (PSA) (≤1 vs. >1 ng/mL) at imaging were performed. Logistic regression tested associations between PSA, ADT receipt, and race with fluciclovine PET/CT positive imaging. RESULTS: Fluciclovine PET/CT positivity rate was 33% for patients with PSA 0-0.5 ng/mL, 21% for >0.5-1.0, 54% for >1.0-2.0, and 66% for >2.0 (p < 0.01). A 59% positivity rate ocurred in patients treated with concurrent ADT versus 37% in those not on ADT (p < 0.01). White were more likely to have a positive scan versus Black patients (55% vs. 38%; p = 0.02). Patients whose primary treatment was radical prostatectomy had a lower positivity rate (33%) versus those treated with radiotherapy (55%) (p < 0.001). On multivariable logistic regression, PSA > 1 ng/mL (all men odds ratio [OR]: 4.06, 95% confidence interval [CI]: 2.07-7.96; men on ADT only OR: 4.42, 95% CI: 1.73-11.26) and use of ADT (OR: 3.94, 95% CI: 1.32-11.75), and White (all men OR: 2.22, 95% CI: 1.20-4.17) predicted positive fluciclovine PET/CT. CONCLUSION: This real-world study assessing 18F-fluciclovine PET/CT performance in an equal access health care system confirms higher detection rates than traditional imaging methods, but positivity is highly influenced by PSA at time of imaging. Additionally, patients currently receiving ADT have at least four times higher likelihood of a positive scan, showing that scan positivity isn't negatively affected by ADT status in this study. Finally, White men were more likely to have a positive scan, the reasons for which should be explored in future studies.

14.
Small ; 20(22): e2309181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100297

RESUMO

The development of catalysts with abundant active interfaces for superior low-temperature catalytic CO oxidation is critical to meet increasingly rigorous emission requirements, yet still challenging. Herein, this work reports a PtCo/CoOx/Al2O3 catalyst with PtCo clusters and enriched Pt─O─Co interfaces induced by hydrogen spillover from the Pt sites and self-oxidation process in air, exhibiting excellent performance for CO oxidation at low temperatures and humid conditions. The combination of structural characterizations and in situ Fourier transform infrared spectroscopy reveals that the PtCo cluster effectively prevents CO saturation/poisoning on the Pt surface. Additionally, the presence of Pt─O─Co interfaces in the PtCo/CoOx/Al2O3 catalyst provides a significant number of active sites for oxygen activation and ─OH formation. This facilitates efficient generation of CO2 at ambient temperature by coupling with nearby adsorbed CO molecules, resulting in superior low-temperature activity and long-term stability for CO oxidation under humid conditions. This work provides a facile route toward rationalizing the design of catalysts with more active interfaces for superior low-temperature CO oxidation under humid conditions for practical applications.

15.
Inorg Chem ; 63(32): 15098-15104, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072372

RESUMO

Interfacial strain engineering can induce structural transformation and introduce new physical properties into materials, which is an effective method to prepare new multifunctional materials. However, interfacial strain has a limited spatial impact size. For example, in 2D thin films, the critical thickness of biaxial strain is typically less than 20 nm, which is not conducive to the maintenance of a strained structure and properties in thick film materials. The construction of a 3D interface can solve this problem. The large lattice mismatch between the BaZrO3 thin film and the substrate can induce the out-of-phase boundary (OPB) structure, which can extend along the thickness direction with the stacking of atoms. The lattice distortion at the OPB structure can provide a clamping effect for each layer of atoms, thus expanding the spatial influence range of biaxial strain. As a result, the uniform in-plane strain distribution and strain-induced ferroelectricity (Pr = 13 µC/cm2) are maintained along the thickness direction in BaZrO3 films.

16.
Environ Res ; 252(Pt 3): 118978, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704012

RESUMO

Tea polyphenols (TPs), as a kind of derivatives from tea waste, were employed as a novel environmentally friendly bio-based sludge conditioner in this study. The findings showed that when TPs were applied at a dosage of 300 mg g-1 DS, the sludge CST0/CST ratio significantly increased to 1.90. pH regulation was found to markedly affect the dewatering efficiency of sludge. At pH 4, the CST0/CST rose to 2.86, coupled with a reduction in the specific resistance to filtration (SRF) from 6.69 × 1013 m kg-1 to 1.43 × 1013 m kg-1 and a decrease in the moisture content (MC) from 90.57% to 68.75%. TPs formed complexes and precipitated sludge proteins, as demonstrated by changes in the extracellular polymeric substances (EPS), viscosity, zeta potential, and particles size distribution. The optimization significance of acidification treatment on sludge structure disintegration, the interaction of TPs with EPS, and the removal of sludge proteins were elucidated. The research provided an ideal approach for the integrated utilization of biomass resources from tea waste and highlighted the potential application of TPs as an environmentally friendly conditioner in sludge dewatering.


Assuntos
Polifenóis , Esgotos , Chá , Polifenóis/química , Esgotos/química , Concentração de Íons de Hidrogênio , Chá/química , Extratos Vegetais/química , Eliminação de Resíduos Líquidos/métodos
17.
BMC Psychiatry ; 24(1): 248, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566016

RESUMO

BACKGROUND: Glutamatergic function abnormalities have been implicated in the etiology of treatment-resistant schizophrenia (TRS), and the efficacy of clozapine may be attributed to its impact on the glutamate system. Recently, evidence has emerged suggesting the involvement of immune processes and increased prevalence of antineuronal antibodies in TRS. This current study aimed to investigate the levels of multiple anti-glutamate receptor antibodies in TRS and explore the effects of clozapine on these antibody levels. METHODS: Enzyme linked immunosorbent assay (ELISA) was used to measure and compare the levels of anti-glutamate receptor antibodies (NMDAR, AMPAR, mGlur3, mGluR5) in clozapine-treated TRS patients (TRS-C, n = 37), clozapine-naïve TRS patients (TRS-NC, n = 39), and non-TRS patients (nTRS, n = 35). Clinical symptom severity was assessed using the Positive and Negative Symptom Scale (PANSS), while cognitive function was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULT: The levels of all four glutamate receptor antibodies in TRS-NC were significantly higher than those in nTRS (p < 0.001) and in TRS-C (p < 0.001), and the antibody levels in TRS-C were comparable to those in nTRS. However, no significant associations were observed between antibody levels and symptom severity or cognitive function across all three groups after FDR correction. CONCLUSION: Our findings suggest that TRS may related to increased anti-glutamate receptor antibody levels and provide further evidence that glutamatergic dysfunction and immune processes may contribute to the pathogenesis of TRS. The impact of clozapine on anti-glutamate receptor antibody levels may be a pharmacological mechanism underlying its therapeutic effects.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Clozapina/efeitos adversos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/diagnóstico , Esquizofrenia Resistente ao Tratamento , Receptores de Glutamato/uso terapêutico , Ácido Glutâmico , Antipsicóticos/efeitos adversos
18.
J Environ Manage ; 368: 121967, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116818

RESUMO

Red mud is a promising candidate for promoting the incineration of Refuse Derived Fuel (RDF) and stabilizing the resulting incineration ash. The combustion conditions, notably temperature, significantly steers the migration and transformation of harmful metal components during combustion, and ultimately affect their retention and speciation in the ash residue. The study attempted to investigate the effect of co-combustion temperature on the enrichment and stability of Cr, Ni, Cu, Zn, Cd and Pb within bottom ashes, and to reveal the underlined promotion mechanism of red mud addition. As temperature increased, red mud's active components formed a robust matrix, helping the formation, melting, and vitrification of silicates and aluminosilicates in the bottom ashes. The process significantly contributed to the encapsulation and stabilization of heavy metals such as Ni, Cu, Zn, Cd, and Pb, with their residual fractions ascending to 71.37%, 55.75%, 74.78%, 84.24%, and 93.54%, respectively. Conversely, high temperatures led to an increase in the proportion of Cr in the extremely unstable acid-soluble fraction of the bottom ashes, reaching 31.52%, posing a heightened risk of environmental migration. Considering the stability of heavy metals in the bottom ashes and the combustion characteristics, 800 °C is identified as the optimal temperature for the co-combustion of RDF and red mud, balancing efficiency and environmental safety. The findings will provide valuable insights for the co-utilization strategy of RDF and red mud, contributing to more informed decision-making in waste-to-energy processes.

19.
Angew Chem Int Ed Engl ; 63(7): e202317987, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152839

RESUMO

Platinum metal (PtM, M=Ni, Fe, Co) alloys catalysts show high oxygen reduction reaction (ORR) activity due to their well-known strain and ligand effects. However, these PtM alloys usually suffer from a deficient ORR durability in acidic environment as the alloyed metal is prone to be dissolved due to its high electronegativity. Herein, we report a new class of PtMn alloy nanodendrite catalyst with low-electronegativity Mn-contraction for boosting the oxygen reduction durability of fuel cells. The moderate strain in PtMn, induced by Mn contraction, yields optimal oxygen reduction activity at 0.53 A mg-1 at 0.9 V versus reversible hydrogen electrode (RHE). Most importantly, we show that relative to well-known high-electronegativity Ni-based Pt alloy counterpart, the PtMn nanodendrite catalyst experiences less transition metals' dissolution in acidic solution and achieves an outstanding mass activity retention of 96 % after 10,000 degradation cycles. Density functional theory calculation reveals that PtMn alloys are thermodynamically more stable than PtNi alloys in terms of formation enthalpy and cohesive energy. The PtMn nanodendrite-based membrane electrode assembly delivers an outstanding peak power density of 1.36 W cm-2 at a low Pt loading and high-performance retention over 50 h operations at 0.6 V in H2 -O2 hydrogen fuel cells.

20.
Angew Chem Int Ed Engl ; 63(26): e202402841, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647519

RESUMO

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA