Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genomics ; 116(2): 110797, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262564

RESUMO

BACKGROUND: Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition and the precise mechanisms underlying HTS remain elusive. This study aimed to identify and validate potential immune-related genes associated with hypertrophic scar formation. METHODS: Skin samples from normal (n = 12) and hypertrophic scar tissues (n = 12) were subjected to RNA-seq analysis. Differentially expressed genes (DEGs) and significant modular genes in Weighted gene Co-expression Network Analysis (WGCNA) were identified. Subsequently, functional enrichment analysis was performed on the intersecting genes. Additionally, eight immune-related genes were matched from the ImmPort database. Validation of NRG1 and CRLF1 was carried out using an external cohort (GSE136906). Furthermore, the association between these two genes and immune cells was assessed by Spearman correlation analysis. Finally, RNA was extracted from normal and hypertrophic scar samples, and RT-qPCR, Immunohistochemistry staining and Western Blot were employed to validate the expression of characteristic genes. RESULTS: A total of 940 DEGs were identified between HTS and normal samples, and 288 key module genes were uncovered via WGCNA. Enrichment analysis in key module revealed involvement in many immune-related pathways, such as Th17 cell differentiation, antigen processing and presentation and B cell receptor signaling pathway. The eight immune-related genes (IFI30, NR2F2, NRG1, ESM1, NFATC2, CRLF1, COLEC12 and IL6) were identified by matching from the ImmPort database. Notably, we observed that activated mast cell positively correlated with CRLF1 expression, while CD8 T cells exhibited a positive correlation with NRG1. The expression of NRG1 and CRLF1 was further validated in clinical samples. CONCLUSION: In this study, two key immune-related genes (CRLF1 and NRG1) were identified as characteristic genes associated with HTS. These findings provide valuable insights into the immune-related mechanisms underlying hypertrophic scar formation.


Assuntos
Cicatriz Hipertrófica , Neuregulina-1 , Receptores de Citocinas , Humanos , Diferenciação Celular , Cicatriz Hipertrófica/genética , Bases de Dados Factuais , Matriz Extracelular , Pele , Receptores de Citocinas/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38508352

RESUMO

Epoxiconazole (EPX) is a triazole fungicide, which has been widely used in pest control of cereal crops. However, its extensive use has led to concerning levels of residue in water bodies, posing substantial risks to aquatic life. In this study, we characterized the toxicological effects of EPX on 6-month-old male and female zebrafish at 70 and 700 µg/L, respectively. The results revealed that EPX exposure markedly increased both body length and weight in zebrafish of both sexes, consequently elevating their condition factor. Besides, EPX exposure resulted in notable alterations in hepatic histopathology. These changes included loosened hepatocyte structure, ballooning degeneration, nucleolysis, and disappearance of cell line, with male zebrafish exhibiting more severe damage. High concentration of EPX also significantly increased hepatic lipid accumulation in male zebrafish, as well as increased hepatic triglyceride (TG) levels. Correspondingly, there was a notable alteration in the transcription of genes including cyp51, hmgcr, and PPAR-γ, which associated with cholesterol and lipid metabolism. Interestingly, with the hepatic transcriptomic analysis, high concentration of EPX produced 195 upregulated and 107 downregulated differential expression genes. Both KEGG and GO analyses identified significant enrichment of these genes in lipid and amino acid metabolism pathways. Notably, some key genes involved in the steroid synthesis pathway were marked upregulated. In addition, molecular docking study confirmed that EPX could bind CYP51 protein well (△G = -7.7 kcal/mol). Taken together, these findings demonstrated the multiple toxic effects of EPX on adult zebrafish.


Assuntos
Compostos de Epóxi , Metabolismo dos Lipídeos , Peixe-Zebra , Animais , Masculino , Feminino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular , Triazóis/toxicidade , Perfilação da Expressão Gênica , Lipídeos
3.
Sci Total Environ ; 933: 173113, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735319

RESUMO

With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/ß-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.


Assuntos
Coração , Triazóis , Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Cardiotoxicidade , Fungicidas Industriais/toxicidade , Coração/efeitos dos fármacos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Triazóis/toxicidade , Regulação para Cima , Poluentes Químicos da Água/toxicidade
4.
Inflammation ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145786

RESUMO

UVB radiation induces inflammatory and oxidative stress responses, contributing to skin damage, yet the underlying mechanisms are not fully understood. N-Myc downstream-regulated gene 2 (NDRG2), an emerging stress-associated gene, remains unexplored in UVB-induced skin injury. In this study, we detected skin NDRG2 expression after UVB irradiation for the first time and further used Ndrg2 knockout mice to clarify the role of NDRG2 in UVB-induced skin injury. Three-month-old male Ndrg2+/+ and Ndrg2-/- mice (16-18g) were exposed to UVB to induce acute skin damage, and then dorsal skin samples were collected for subsequent analyses. UVB-induced skin damage was scored. Western Blot Analysis, immunofluorescence (IF) double labeling, and immunohistochemistry (IHC) were employed to assess NDRG2 expression and/or distribution. The concentrations of TNF-α, IL-6, IL-1ß, MPO, MMP8, superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining were employed to determine pathological changes. RNA sequencing and analysis were performed to estimate transcript expression levels and analyze mRNA expression. DESeq2 software was employed to identify differentially expressed genes (DEGs). DEGs were visualized using volcanic and heat maps. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to identify primary biological functions, metabolic pathways, or signal transduction pathways associated with DEGs. UVB-challenged Ndrg2-/- mice exhibited significantly exacerbated skin damage (erythema, edema, and erosion), neutrophil infiltration, and apoptosis compared to Ndrg2+/+ mice. Furthermore, UVB-challenged Ndrg2-/- mice displayed significantly elevated pro-inflammatory cytokines, myeloperoxidase (MPO), matrix metalloproteinase-8 (MMP8), and reduced antioxidant expression. RNA sequencing identified 1091 significantly differentially expressed genes enriched in inflammation, immune response, and oxidative stress pathways. In conclusion, the deficiency of Ndrg2 markedly exacerbated UVB-induced skin damage by promoting inflammatory responses and inhibiting antioxidant responses. This suggests that stabilizing NDRG2 expression holds promise as a therapeutic strategy for protecting against UVB-induced skin damage.

5.
J Hazard Mater ; 476: 135104, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970972

RESUMO

The coexistence of heavy metals and pesticides poses a critical challenge in agricultural ecosystems. Traditional toxicity assessments often focus only on the individual impacts of either pesticides or heavy metals. Here, the untargeted metabolomics and 16 S rRNA sequencing were used to assess the individual and combined effects of cadmium (Cd) and triazophos (TRI) on hook snout carps (Opsariichthys bidens). Cd caused much more serious impacts on hepatic metabolism and gut microbiota than those in TRI. Combined Cd and TRI exposure synergistically affected hepatic metabolism, causing mitochondrial dysfunction and even oxidative damage. Simultaneously, 16 S rRNA sequencing highlighted significant variations in the composition and abundance of gut microbiota. A noteworthy connection emerged between these distinct microbiota profiles and disruptions in energy metabolism, ultimately leading to disorders in metabolites. These findings enhanced the understanding of risks posed by heavy metals and pesticides, providing insights for better environmental risk assessments of aquatic organisms.


Assuntos
Cádmio , Organotiofosfatos , Triazóis , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Triazóis/toxicidade , Organotiofosfatos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , RNA Ribossômico 16S/genética , Metabolômica , Praguicidas/toxicidade , Multiômica
6.
Nat Commun ; 15(1): 8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167496

RESUMO

The secretion and quality control of glycosylphosphatidylinositol-anchored proteins (GPI-APs) necessitates post-attachment remodeling initiated by the evolutionarily conserved PGAP1, which deacylates the inositol in nascent GPI-APs. Impairment of PGAP1 activity leads to developmental diseases in humans and fatality and infertility in animals. Here, we present three PGAP1 structures (2.66-2.84 Å), revealing its 10-transmembrane architecture and product-enzyme interaction details. PGAP1 holds GPI-AP acyl chains in an optimally organized, guitar-shaped cavity with apparent energetic penalties from hydrophobic-hydrophilic mismatches. However, abundant glycan-mediated interactions in the lumen counterbalance these repulsions, likely conferring substrate fidelity and preventing off-target hydrolysis of bulk membrane lipids. Structural and biochemical analyses uncover a serine hydrolase-type catalysis with atypical features and imply mechanisms for substrate entrance and product release involving a drawing compass movement of GPI-APs. Our findings advance the mechanistic understanding of GPI-AP remodeling.


Assuntos
Inositol , Proteínas de Membrana , Animais , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Inositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Hidrolases , Controle de Qualidade , Glicosilfosfatidilinositóis/química
8.
Int. braz. j. urol ; 45(1): 89-99, Jan.-Feb. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-989968

RESUMO

ABSTRACT Purpose: To elucidate the prognostic value of systemic inflammatory response in patients with metastatic renal cell carcinoma (mRCC) who are treated with sunitinib, we evaluated the prognostic role of C-reactive protein (CRP) kinetics. This study also compared prognostic models containing CRP kinetics and neutrophil-to-lymphocyte ratio (NLR) kinetics. Materials and Methods: A consecutive cohort of 94 patients with mRCC who were treated with sunitinib was retrospectively included from Fudan University Shanghai Cancer Center. According to dynamic changes in CRP and the NLR, patients were divided into three groups for analysis of CRP and NLR kinetics. The associations between survival and potential prognostic factors were assessed. The incremental value of prognostication was evaluated. Results: A significant difference (P<0.001) in overall survival (OS) was observed among the three groups of CRP kinetics. The median OS of the non-elevated group was nearly 1.3-fold longer than that of the normalized group (33.0 vs. 26.3 months), and two times longer than that of the non-normalized group (33.0 vs. 14.0 months). Multivariate analysis showed that CRP and NLR kinetics were independent prognostic indicators. The model containing CRP kinetics had a better predictive accuracy than that with NLR kinetics, which was supported by the C-index (0.731 vs. 0.684) and the likelihood ratio χ2 test (79.9% vs. 44.9%). Conclusion: Our study suggests that dynamic changes in CRP can better predict survival in patients with mRCC who are treated with sunitinib. Routine assessment of CRP before and after targeted therapy would help identify patients at risk of a poor outcome.


Assuntos
Humanos , Masculino , Feminino , Proteína C-Reativa/análise , Carcinoma de Células Renais/metabolismo , Sunitinibe/uso terapêutico , Neoplasias Renais/metabolismo , Antineoplásicos/uso terapêutico , Prognóstico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/tratamento farmacológico , Biomarcadores/sangue , Estudos Retrospectivos , Estudos de Coortes , Estimativa de Kaplan-Meier , Neoplasias Renais/patologia , Neoplasias Renais/tratamento farmacológico , Pessoa de Meia-Idade , Metástase Neoplásica , Metástase Neoplásica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA