Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 577-604, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30566373

RESUMO

The Hippo pathway was initially discovered in Drosophila melanogaster as a key regulator of tissue growth. It is an evolutionarily conserved signaling cascade regulating numerous biological processes, including cell growth and fate decision, organ size control, and regeneration. The core of the Hippo pathway in mammals consists of a kinase cascade, MST1/2 and LATS1/2, as well as downstream effectors, transcriptional coactivators YAP and TAZ. These core components of the Hippo pathway control transcriptional programs involved in cell proliferation, survival, mobility, stemness, and differentiation. The Hippo pathway is tightly regulated by both intrinsic and extrinsic signals, such as mechanical force, cell-cell contact, polarity, energy status, stress, and many diffusible hormonal factors, the majority of which act through G protein-coupled receptors. Here, we review the current understanding of molecular mechanisms by which signals regulate the Hippo pathway with an emphasis on mechanotransduction and the effects of this pathway on basic biology and human diseases.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Via de Sinalização Hippo , Humanos , Mecanotransdução Celular , Proteínas Serina-Treonina Quinases/fisiologia , Serina-Treonina Quinase 3 , Proteínas Supressoras de Tumor/metabolismo
3.
Cell ; 167(6): 1525-1539.e17, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912060

RESUMO

Poorly immunogenic tumor cells evade host immunity and grow even in the presence of an intact immune system, but the complex mechanisms regulating tumor immunogenicity have not been elucidated. Here, we discovered an unexpected role of the Hippo pathway in suppressing anti-tumor immunity. We demonstrate that, in three different murine syngeneic tumor models (B16, SCC7, and 4T1), loss of the Hippo pathway kinases LATS1/2 (large tumor suppressor 1 and 2) in tumor cells inhibits tumor growth. Tumor regression by LATS1/2 deletion requires adaptive immune responses, and LATS1/2 deficiency enhances tumor vaccine efficacy. Mechanistically, LATS1/2-null tumor cells secrete nucleic-acid-rich extracellular vesicles, which induce a type I interferon response via the Toll-like receptors-MYD88/TRIF pathway. LATS1/2 deletion in tumors thus improves tumor immunogenicity, leading to tumor destruction by enhancing anti-tumor immune responses. Our observations uncover a key role of the Hippo pathway in modulating tumor immunogenicity and demonstrate a proof of concept for targeting LATS1/2 in cancer immunotherapy.


Assuntos
Tolerância Imunológica , Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Vacinas Anticâncer/imunologia , Deleção de Genes , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Supressoras de Tumor/genética
4.
Cell ; 163(4): 811-28, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26544935

RESUMO

Two decades of studies in multiple model organisms have established the Hippo pathway as a key regulator of organ size and tissue homeostasis. By inhibiting YAP and TAZ transcription co-activators, the Hippo pathway regulates cell proliferation, apoptosis, and stemness in response to a wide range of extracellular and intracellular signals, including cell-cell contact, cell polarity, mechanical cues, ligands of G-protein-coupled receptors, and cellular energy status. Dysregulation of the Hippo pathway exerts a significant impact on cancer development. Further investigation of the functions and regulatory mechanisms of this pathway will help uncovering the mystery of organ size control and identify new targets for cancer treatment.


Assuntos
Neoplasias/metabolismo , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Fenômenos Fisiológicos Celulares , Homeostase , Humanos
5.
Cell ; 162(4): 780-94, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276632

RESUMO

The transcriptional co-activators YAP and TAZ are key regulators of organ size and tissue homeostasis, and their dysregulation contributes to human cancer. Here, we discover YAP/TAZ as bona fide downstream effectors of the alternative Wnt signaling pathway. Wnt5a/b and Wnt3a induce YAP/TAZ activation independent of canonical Wnt/ß-catenin signaling. Mechanistically, we delineate the "alternative Wnt-YAP/TAZ signaling axis" that consists of Wnt-FZD/ROR-Gα12/13-Rho GTPases-Lats1/2 to promote YAP/TAZ activation and TEAD-mediated transcription. YAP/TAZ mediate the biological functions of alternative Wnt signaling, including gene expression, osteogenic differentiation, cell migration, and antagonism of Wnt/ß-catenin signaling. Together, our work establishes YAP/TAZ as critical mediators of alternative Wnt signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Receptores Frizzled/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Transativadores , Fatores de Transcrição , Proteínas de Sinalização YAP , beta Catenina/metabolismo
6.
Mol Cell ; 82(22): 4196-4198, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36400006

RESUMO

Using multi-omics approaches, Park et al. show that reduced cellular acetyl-CoA and protein hypoacetylation promote liver cancer growth and dedifferentiation.


Assuntos
Histonas , Neoplasias Hepáticas , Humanos , Acetilação , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias Hepáticas/genética
7.
Cell ; 158(4): 695-696, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126776

RESUMO

Tetraploid cells generated by abnormal cell division are often arrested during the cell cycle or cleared by apoptosis. Evasion of these defense mechanisms leads to genomic instability and tumorigenesis. In this issue, Ganem et al. report that extra centrosome-induced activation of the Hippo pathway kinase LATS2 is a key mechanism of tetraploidy-induced cell-cycle arrest.


Assuntos
Citocinese , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Via de Sinalização Hippo , Humanos
8.
Immunity ; 51(6): 1012-1027.e7, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31668641

RESUMO

Regulatory T (Treg) cells are critical mediators of immune tolerance whose activity depends upon T cell receptor (TCR) and mTORC1 kinase signaling, but the mechanisms that dictate functional activation of these pathways are incompletely understood. Here, we showed that amino acids license Treg cell function by priming and sustaining TCR-induced mTORC1 activity. mTORC1 activation was induced by amino acids, especially arginine and leucine, accompanied by the dynamic lysosomal localization of the mTOR and Tsc complexes. Rag and Rheb GTPases were central regulators of amino acid-dependent mTORC1 activation in effector Treg (eTreg) cells. Mice bearing RagA-RagB- or Rheb1-Rheb2-deficient Treg cells developed a fatal autoimmune disease and had reduced eTreg cell accumulation and function. RagA-RagB regulated mitochondrial and lysosomal fitness, while Rheb1-Rheb2 enforced eTreg cell suppressive gene signature. Together, these findings reveal a crucial requirement of amino acid signaling for licensing and sustaining mTORC1 activation and functional programming of Treg cells.


Assuntos
Arginina/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Ciclo Celular , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia
9.
Cell ; 152(1-2): 290-303, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332761

RESUMO

Autophagy is a stress response protecting cells from unfavorable conditions, such as nutrient starvation. The class III phosphatidylinositol-3 kinase, Vps34, forms multiple complexes and regulates both intracellular vesicle trafficking and autophagy induction. Here, we show that AMPK plays a key role in regulating different Vps34 complexes. AMPK inhibits the nonautophagy Vps34 complex by phosphorylating T163/S165 in Vps34 and therefore suppresses overall PI(3)P production and protects cells from starvation. In parallel, AMPK activates the proautophagy Vps34 complex by phosphorylating S91/S94 in Beclin1 to induce autophagy. Atg14L, an autophagy-essential gene present only in the proautophagy Vps34 complex, inhibits Vps34 phosphorylation but increases Beclin1 phosphorylation by AMPK. As such, Atg14L dictates the differential regulation (either inhibition or activation) of different Vps34 complexes in response to glucose starvation. Our study reveals an intricate molecular regulation of Vps34 complexes by AMPK in nutrient stress response and autophagy.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Classe III de Fosfatidilinositol 3-Quinases/genética , Glucose/metabolismo , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Alinhamento de Sequência , Proteínas de Transporte Vesicular/metabolismo
10.
Genes Dev ; 34(7-8): 511-525, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115406

RESUMO

The Hippo pathway is a master regulator of tissue homeostasis and organ size. NF2 is a well-established tumor suppressor, and loss of NF2 severely compromises Hippo pathway activity. However, the precise mechanism of how NF2 mediates upstream signals to regulate the Hippo pathway is not clear. Here we report that, in mammalian cells, NF2's lipid-binding ability is critical for its function in activating the Hippo pathway in response to osmotic stress. Mechanistically, osmotic stress induces PI(4,5)P2 plasma membrane enrichment by activating the PIP5K family, allowing for NF2 plasma membrane recruitment and subsequent downstream Hippo pathway activation. An NF2 mutant deficient in lipid binding is unable to activate the Hippo pathway in response to osmotic stress, as measured by LATS and YAP phosphorylation. Our findings identify the PIP5K family as novel regulators upstream of Hippo signaling, and uncover the importance of phosphoinositide dynamics, specifically PI(4,5)P2, in Hippo pathway regulation.


Assuntos
Homeostase/fisiologia , Neurofibromina 2/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Via de Sinalização Hippo , Humanos , Camundongos , Neurofibromina 2/genética , Pressão Osmótica/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Sinalização YAP
11.
Genes Dev ; 34(1-2): 72-86, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831627

RESUMO

Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica , Transativadores/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes fos/genética , Células HEK293 , Humanos , Fígado/metabolismo , Melanoma/fisiopatologia , Camundongos , Mitógenos/farmacologia , Tamanho do Órgão/genética , Regiões Promotoras Genéticas/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias Uveais/fisiopatologia , Proteínas de Sinalização YAP
12.
Cell ; 150(4): 780-91, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22863277

RESUMO

The Hippo pathway is crucial in organ size control, and its dysregulation contributes to tumorigenesis. However, upstream signals that regulate the mammalian Hippo pathway have remained elusive. Here, we report that the Hippo pathway is regulated by G-protein-coupled receptor (GPCR) signaling. Serum-borne lysophosphatidic acid (LPA) and sphingosine 1-phosphophate (S1P) act through G12/13-coupled receptors to inhibit the Hippo pathway kinases Lats1/2, thereby activating YAP and TAZ transcription coactivators, which are oncoproteins repressed by Lats1/2. YAP and TAZ are involved in LPA-induced gene expression, cell migration, and proliferation. In contrast, stimulation of Gs-coupled receptors by glucagon or epinephrine activates Lats1/2 kinase activity, thereby inhibiting YAP function. Thus, GPCR signaling can either activate or inhibit the Hippo-YAP pathway depending on the coupled G protein. Our study identifies extracellular diffusible signals that modulate the Hippo pathway and also establishes the Hippo-YAP pathway as a critical signaling branch downstream of GPCR.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Aciltransferases , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Lisofosfolipídeos/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Tamanho do Órgão , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Soro/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Fatores de Transcrição/metabolismo
13.
Mol Cell ; 73(1): 7-21.e7, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472188

RESUMO

The transcriptional regulators YAP and TAZ play important roles in development, physiology, and tumorigenesis and are negatively controlled by the Hippo pathway. It is yet unknown why the YAP/ TAZ proteins are frequently activated in human malignancies in which the Hippo pathway is still active. Here, by a gain-of-function cancer metastasis screen, we discovered OTUB2 as a cancer stemness and metastasis-promoting factor that deubiquitinates and activates YAP/TAZ. We found OTUB2 to be poly-SUMOylated on lysine 233, and this SUMOylation enables it to bind YAP/TAZ. We also identified a yet-unknown SUMO-interacting motif (SIM) in YAP and TAZ required for their association with SUMOylated OTUB2. Importantly, EGF and oncogenic KRAS induce OTUB2 poly-SUMOylation and thereby activate YAP/TAZ. Our results establish OTUB2 as an essential modulator of YAP/TAZ and also reveal a novel mechanism via which YAP/TAZ activity is induced by oncogenic KRAS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/enzimologia , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosfoproteínas/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Fenótipo , Fosfoproteínas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Sumoilação , Tioléster Hidrolases/genética , Fatores de Tempo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
14.
Annu Rev Biochem ; 80: 1001-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21548787

RESUMO

The target of rapamycin (TOR) is a central cell growth regulator conserved from yeast to mammals. Uncontrolled TOR activation is commonly observed in human cancers. TOR forms two distinct structural and functional complexes, TORC1 and TORC2. TORC1 promotes cell growth and cell size by stimulating protein synthesis. A wide range of signals, including nutrients, energy levels, and growth factors, are known to control TORC1 activity. Among them, amino acids (AA) not only potently activate TORC1 but are also required for TORC1 activation by other stimuli, such as growth factors. The mechanisms of growth factors and cellular energy status in activating TORC1 have been well elucidated, whereas the molecular basis of AA signaling is just emerging. Recent advances in the role of AA signaling on TORC1 activation have revealed key components, including the Rag GTPases, protein kinases, nutrient transporters, and the intracellular trafficking machinery, in relaying AA signals to TORC1 activation.


Assuntos
Aminoácidos/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antibióticos Antineoplásicos/metabolismo , Autofagia/fisiologia , Ativação Enzimática , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/genética
15.
EMBO J ; 41(13): e110031, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35535466

RESUMO

Autophagy is a cellular degradative pathway that plays diverse roles in maintaining cellular homeostasis. Cellular stress caused by starvation, organelle damage, or proteotoxic aggregates can increase autophagy, which uses the degradative capacity of lysosomal enzymes to mitigate intracellular stresses. Early studies have shown a role for autophagy in the suppression of tumorigenesis. However, work in genetically engineered mouse models and in vitro cell studies have now shown that autophagy can be either cancer-promoting or inhibiting. Here, we summarize the effects of autophagy on cancer initiation, progression, immune infiltration, and metabolism. We also discuss the efforts to pharmacologically target autophagy in the clinic and highlight future areas for exploration.


Assuntos
Autofagia , Neoplasias , Animais , Carcinogênese , Transformação Celular Neoplásica , Homeostase , Camundongos
16.
EMBO J ; 41(17): e110698, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844135

RESUMO

The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.


Assuntos
1-Fosfatidilinositol 4-Quinase , Fosfolipase D , GTP Fosfo-Hidrolases/metabolismo , Complexo de Golgi/metabolismo , Fosfolipase D/química , Fosfolipase D/genética , Fosfolipase D/metabolismo
17.
Cell ; 144(5): 640-2, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21376227

RESUMO

The target of rapamycin complex 2 (TORC2) is a key regulator of cell growth. Zinzalla et al. (2011) now provide evidence that TORC2 is activated by direct association with the ribosome, which may ensure that TORC2 activity is calibrated to match the cell's intrinsic growth capacity.

18.
Mol Cell ; 72(2): 328-340.e8, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30293781

RESUMO

The Hippo pathway plays a crucial role in organ size control and tumor suppression, but its precise regulation is not fully understood. In this study, we discovered that phosphatidic acid (PA)-related lipid signaling is a key regulator of the Hippo pathway. Supplementing PA in various Hippo-activating conditions activates YAP. This PA-related lipid signaling is involved in Rho-mediated YAP activation. Mechanistically, PA directly interacts with Hippo components LATS and NF2 to disrupt LATS-MOB1 complex formation and NF2-mediated LATS membrane translocation and activation, respectively. Inhibition of phospholipase D (PLD)-dependent PA production suppresses YAP oncogenic activities. PLD1 is highly expressed in breast cancer and positively correlates with YAP activation, suggesting their pathological relevance in breast cancer development. Taken together, our study not only reveals a role of PLD-PA lipid signaling in regulating the Hippo pathway but also indicates that the PLD-PA-YAP axis is a potential therapeutic target for cancer treatment.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Ácidos Fosfatídicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Via de Sinalização Hippo , Humanos , Estimulador Tireóideo de Ação Prolongada/metabolismo , Camundongos , Camundongos Nus , Neurofibromina 2/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipase D/metabolismo , Fosfoproteínas/metabolismo
19.
Genes Dev ; 32(11-12): 737-739, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29921661

RESUMO

Mutations in PKD1 and PKD2 are the leading cause of autosomal dominant polycystic kidney disease (ADPKD). In this issue of Genes & Development, a report by Cai and colleagues (pp. 781-793) reveals new insight into the molecular basis by which PKD1 deficiency leads to cystic kidney pathogenesis. By using extensive mouse genetic analyses coupled with in vitro cystic assays, the investigators delineate a RhoA-YAP-c-Myc signaling axis as a key downstream from PKD1 deficiency in ADPKD pathogenesis. Their findings provide evidence that the Hippo pathway could be a potential target for treating ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Camundongos , Mutação , Fosfoproteínas , Transdução de Sinais , Canais de Cátion TRPP/genética , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP
20.
Trends Biochem Sci ; 46(1): 51-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928629

RESUMO

Hippo pathway components are structurally and functionally conserved and are notable for their role in controlling organ size. More diverse functions of the Hippo pathway have been recognized, including development, tissue homeostasis, wound healing and regeneration, immunity, and tumorigenesis. During embryogenesis, different signaling pathways are repeatedly and cooperatively activated, leading to differential gene expression in specific developmental contexts. In this article, we present an overview on the regulation and function of the Hippo pathway in mammalian early development. We introduce the Hippo pathway components and major upstream signals that act through this pathway to influence embryogenesis. We also discuss the roles of Hippo pathway in tissue specification and organ development during organogenesis.


Assuntos
Desenvolvimento Embrionário/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Via de Sinalização Hippo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA