RESUMO
Gamma (γ)-ray irradiation is one of the important modern breeding methods. Gamma-ray irradiation can affect the growth rate and other characteristics of plants. Plant growth rate is crucial for plants. In horticultural crops, the growth rate of plants is closely related to the growth of leaves and flowering time, both of which have important ornamental value. In this study, 60Co-γ-ray was used to treat P. equestris plants. After irradiation, the plant's leaf growth rate increased, and sugar content and antioxidant enzyme activity increased. Therefore, we used RNA-seq technology to analyze the differential gene expression and pathways of control leaves and irradiated leaves. Through transcriptome analysis, we investigated the reasons for the rapid growth of P. equestris leaves after irradiation. In the analysis, genes related to cell wall relaxation and glucose metabolism showed differential expression. In addition, the expression level of genes encoding ROS scavenging enzyme synthesis regulatory genes increased after irradiation. We identified two genes related to P. equestris leaf growth using VIGS technology: PeNGA and PeEXPA10. The expression of PeEXPA10, a gene related to cell wall expansion, was down-regulated, cell wall expansion ability decreased, cell size decreased, and leaf growth rate slowed down. The TCP-NGATHA (NGA) molecular regulatory module plays a crucial role in cell proliferation. When the expression of the PeNGA gene decreases, the leaf growth rate increases, and the number of cells increases. After irradiation, PeNGA and PeEXPA10 affect the growth of P. equestris leaves by influencing cell proliferation and cell expansion, respectively. In addition, many genes in the plant hormone signaling pathway show differential expression after irradiation, indicating the crucial role of plant hormones in plant leaf growth. This provides a theoretical basis for future research on leaf development and biological breeding.
Assuntos
Orchidaceae , Melhoramento Vegetal , Perfilação da Expressão Gênica , Genes de Plantas , RNA-Seq , Antioxidantes/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Folhas de Planta , Regulação da Expressão Gênica de Plantas , Transcriptoma/genéticaRESUMO
Trichomes are specialized hair-like structures in the epidermal cells of the above-ground parts of plants and help to protect them from pests and pathogens, and produce valuable metabolites. Chrysanthemum morifolium, which is used in tea products, has both ornamental and medicinal value; however, it is susceptible to infection by the fungus Alternaria alternata, which can result in substantial economic losses. Increasing the density of glandular trichomes enhances disease resistance and improves the production of medicinal metabolites in chrysanthemums, and jasmonate (JA) is known to promote the formation of trichomes in various plants. However, it remains unclear whether glandular trichomes in chrysanthemums are regulated by JA. In addition, grafting, a technique that can improve plant resistance to biotic stresses, has been poorly examined for its impact on glandular trichomes, terpenoids, and disease resistance. In this study, we demonstrate that grafting with Artemisia vulgaris rootstocks improves the resistance of chrysanthemum scions to A. alternata. Heterografted chrysanthemums exhibited higher trichome density and terpenoid content compared to self-grafted counterparts. Transcriptome analysis highlighted the significant role of CmJAZ1-like in disease resistance in heterografted chrysanthemums. Lines overexpressing CmJAZ1-like exhibited sensitivity to A. alternata, and this was characterized by reduced glandular trichome density and limited terpenoid content. Conversely, CmJAZ1-like silenced lines exhibited resistance to A. alternata and showed increased glandular trichome density and terpenoid content. Higher JA content was found in the heterografted chrysanthemum scions compared to self-grafted ones. Furthermore, we established that JA promoted the development of glandular trichomes and the synthesis of terpenoids while also inducing the degradation of CmJAZ1-like proteins in chrysanthemums. Our findings suggest that higher JA increases trichome density and terpenoid content, thereby enhancing resistance to A. alternata by regulating CmJAZ1-like in heterografted chrysanthemums.
Assuntos
Alternaria , Chrysanthemum , Ciclopentanos , Resistência à Doença , Oxilipinas , Doenças das Plantas , Terpenos , Tricomas , Oxilipinas/metabolismo , Alternaria/fisiologia , Ciclopentanos/metabolismo , Tricomas/metabolismo , Terpenos/metabolismo , Chrysanthemum/metabolismo , Chrysanthemum/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismoRESUMO
The TIFY gene family (formerly known as the zinc finger proteins expressed in inflorescence meristem (ZIM) family) not only functions in plant defense responses but also are widely involved in regulating plant growth and development. However, the identification and functional analysis of TIFY proteins remain unexplored in Orchidaceae. Here, we identified 19 putative TIFY genes in the Phalaenopsis aphrodite genome. The phylogenetic tree classified them into four subfamilies: 14 members from JAZ, 3 members from ZML, and 1 each from PPD and TIFY. Sequence analysis revealed that all Phalaenopsis TIFY proteins contained a TIFY domain. Exon-intron analysis showed that the intron number and length of Phalaenopsis TIFY genes varied, whereas the same subfamily and subgroup genes had similar exon or intron numbers and distributions. The most abundant cis-elements in the promoter regions of the 19 TIFY genes were associated with light responsiveness, followed by MeJA and ABA, indicating their potential regulation by light and phytohormones. The 13 candidate TIFY genes screened from the transcriptome data exhibited two types of expression trends, suggesting their different roles in cell proliferation and cell expansion of floral organ growth during Phalaenopsis flower opening. Overall, this study serves as a background for investigating the underlying roles of TIFY genes in floral organ growth in Phalaenopsis.
Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Família Multigênica , Orchidaceae , Proteínas de Plantas , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genoma de Planta , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genéticaRESUMO
Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.
Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Evolução Molecular , NucleotídeosRESUMO
Petals are the second floral whorl of angiosperms, exhibiting astonishing diversity in their size between and within species. This variation is essential for protecting their inner reproductive organs and attracting pollinators for fertilization. However, currently, the genetic and developmental control of petal size remains unexplored. Chrysanthemum (Chrysanthemum morifolium) belongs to the Asteraceae family, the largest group of angiosperms, and the extraordinary diversity of petal size in chrysanthemums makes it an ideal model for exploring the regulation mechanism of petal size. Here, we reveal that overexpression of a JAZ repressor CmJAZ1-like exhibits decreased petal size compared to that of the wild-type as a result of repressed cell expansion. Through further in-depth exploration, we confirm an interaction pair between CmJAZ1-like and the bHLH transcription factor CmBPE2. The inhibition of CmBPE2 expression negatively regulates petal size by downregulating the expression of genes involved in cell expansion. Furthermore, CmJAZ1-like significantly reduced the activation ability of CmBPE2 on its target gene CmEXPA7 by directly interacting with it, thus participating in the regulation of petal size development in chrysanthemum. Our results will provide insights into the molecular mechanisms of petal size regulation in flowering plants.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Chrysanthemum , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores , Chrysanthemum/genética , Chrysanthemum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
YABBY (YAB) genes are specifically expressed in abaxial cells of lateral organs and determine abaxial cell fate. However, most studies have focused on few model plants, and the molecular mechanisms of YAB genes are not well understood. Here, we identified a YAB transcription factor in chrysanthemum (Chrysanthemum morifolium), Dwarf and Robust Plant (CmDRP), that belongs to a distinct FILAMENTOUS FLOWER (FlL)/YAB3 sub-clade lost in Brassicaceae. CmDRP was expressed in various tissues but did not show any polar distribution in chrysanthemum. Overexpression of CmDRP resulted in a semi-dwarf phenotype with a significantly decreased active GA3 content, while reduced expression generated the opposite phenotype. Furthermore, plant height of transgenic plants was partially rescued through the exogenous application of GA3 and Paclobutrazol, and expression of the GA biosynthesis gene CmGA3ox1 was significantly altered in transgenic plants. Yeast one-hybrid, luciferase, and chromatin immunoprecipitation-qPCR analyses showed that CmDRP could directly bind to the CmGA3ox1 promoter and suppress its expression. Our research reveals a nonpolar expression pattern of a YAB family gene in dicots and demonstrates it regulates plant height through the GA pathway, which will deepen the understanding of the genetic and molecular mechanisms of YAB genes.
Assuntos
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Stem mechanical strength is one of the most important agronomic traits that affects the resistance of plants against insects and lodging, and plays an essential role in the quality and yield of plants. Several transcription factors regulate mechanical strength in crops. However, mechanisms of stem strength formation and regulation remain largely unexplored, especially in ornamental plants. In this study, we identified an atypical bHLH transcription factor CmHLB (HLH PROTEIN INVOLVED IN LIGNIN BIOSYNTHESIS) in chrysanthemum, belonging to a small bHLH sub-family - the PACLOBUTRAZOL RESISTANCE (PRE) family. Overexpression of CmHLB in chrysanthemum significantly increased mechanical strength of the stem, cell wall thickness, and lignin content, compared with the wild type. In contrast, CmHLB RNA interference lines exhibited the opposite phenotypes. RNA-seq analysis indicated that CmHLB promoted the expression of genes involved in lignin biosynthesis. Furthermore, we demonstrated that CmHLB interacted with Chrysanthemum KNOTTED ARABIDOPSIS THALIANA7 (CmKNAT7) through the KNOX2 domain, which has a conserved function, i.e. it negatively regulates secondary cell wall formation of fibres and lignin biosynthesis. Collectively, our results reveal a novel role for CmHLB in regulating lignin biosynthesis by interacting with CmKNAT7 and affecting stem mechanical strength in Chrysanthemum.
Assuntos
Arabidopsis , Chrysanthemum , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Parede Celular/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
KEY MESSAGE: The study has facilitated important insights into the regulatory networks involved in flower development in chrysanthemum (Asteraceae), and is informative with respect to the mechanism of flower shape determination. Chrysanthemum morifolium, valued as an ornamental species given the diversity of its inflorescence form, is viewed as a model for understanding flower development in the Asteraceae. Yet, the underlying regulatory networks remain largely unexplored. Here, a transcriptomic survey of the Chrysanthemum morifolium variety 'Jinba' was undertaken to uncover the global gene expression profiles and identify the modules of co-transcribed genes associated with flower development. The weighted gene coexpression network analysis revealed important networks and hub genes including ray floret petals-specific coexpression network, disc floret petals-specific network, B and E class genes involved network and CYC2 genes network. Three ray floret petal-specific hub genes were also strongly transcribed in the ray florets of a selection of six diverse varieties and especially so in those which form ligulate ray floret petals. CmCYC2c was strongly transcribed in the distal and lateral regions of the ray floret petals, and also, along with CmCYC2d, in the tubular ray florets. Furthermore, CmOFP, belonging to the family of ovate proteins, was identified in the CYC2 genes network. CmOFP can interact with CmCYC2d that physically interact with CmCYC2c. This work provides important insights into the regulatory networks involved in flower development in chrysanthemum, and is informative with respect to the mechanistic basis of the regulation of flower shape.
Assuntos
Chrysanthemum/metabolismo , Flores/metabolismo , Chrysanthemum/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Autopolyploids often exhibit plant characteristics different from their diploid ancestors and are frequently associated with altered genes expression controlling growth and development. TCP is a unique transcription factor family in plants that is closely related to plant growth and development. Based on transcriptome sequencing of Chrysanthemum nankingense, 23 full-length TCP genes were cloned. The expression of CnTCP9 was most variable in tetraploids, at least threefold greater than diploids. Due to the lack of a C. nankingense transgenic system, we overexpressed CnTCP9 in Arabidopsis thaliana (Col-0) and Chrysanthemum morifolium. Overexpression of CnTCP9 caused enlargement of leaves in A. thaliana and petals in C. morifolium, and the expression of genes downstream of the GA pathway in C. morifolium were increased. Our results suggest that autopolyploidization of C. nankingense led to differential expression of TCP family genes, thereby affecting plant characteristics by the GA pathway. This study improves the understanding of enlarged plant size after autopolyploidization.
RESUMO
Chrysanthemum (Chrysanthemum morifolium) is one of the four major cut-flower plants worldwide and possesses both high ornamental value and cultural connotation. As most chrysanthemum varieties flower in autumn, it is costly to achieve annual production. JAZ genes in the TIFY family are core components of the jasmonic acid (JA) signaling pathway; in addition to playing a pivotal role in plant responses to defense, they are also widely implicated in regulating plant development processes. Here, we characterized the TIFY family gene CmJAZ1-like from the chrysanthemum cultivar 'Jinba'. CmJAZ1-like localizes in the nucleus and has no transcriptional activity in yeast. Tissue expression pattern analysis indicated that CmJAZ1-like was most active in the root and shoot apex. Overexpressing CmJAZ1-like with Jas domain deletion in chrysanthemum resulted in late flowering. RNA-Seq analysis of the overexpression lines revealed some differentially expressed genes (DEGs) involved in flowering, such as the homologs of the flowering integrators FT and SOC1, an FUL homolog involved in flower meristem identity, AP2 domain-containing transcription factors, MADS box genes, and autonomous pathway-related genes. Based on KEGG pathway enrichment analysis, the differentially transcribed genes were enriched in carbohydrate metabolic and fatty acid-related pathways, which are notable for their role in flowering in plants. This study preliminarily verified the function of CmJAZ1-like in chrysanthemum flowering, and the results can be used in molecular breeding programs aimed at flowering time regulation of chrysanthemum.
RESUMO
R2R3-MYB transcription factors are important regulators of the growth and development of plants. Here, CmMYB8 a chrysanthemum gene encoding an R2R3-MYB transcription factor, was isolated and functionally characterized. The gene was transcribed throughout the plant, but most strongly in the stem. When CmMYB8 was over-expressed, a number of genes encoding components of lignin synthesis were down-regulated, and the plants' lignin content was reduced. The composition of the lignin in the transgenic plants was also altered, and its S/G ratio was reduced. A further consequence of the over-expression of CmMYB8 was to lessen the transcript abundance of key genes involved in flavonoid synthesis, resulting in a reduced accumulation of flavonoids. The indication is that the CmMYB8 protein participates in the negative regulation of both lignin and flavonoid synthesis.
Assuntos
Chrysanthemum , Flavonoides , Regulação da Expressão Gênica de Plantas , Lignina , Fatores de Transcrição , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonoides/genética , Regulação da Expressão Gênica de Plantas/genética , Lignina/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genéticaRESUMO
TOPLESS (TPL)/TOPLESS-related (TPR) corepressors are important regulators of plant growth and development, but their functions in chrysanthemum (Chrysanthemum morifolium) are currently unclear. In this study, a chrysanthemum TPL/TPR family gene, designated CmTPL1-1, was characterized. This gene encodes an 1135-amino-acid polypeptide harboring a conserved N-terminal domain and two C-terminal WD40 domains. CmTPL1-1 showed no transcriptional activity in yeast, and a localization experiment indicated that it localized to the nuclei in onion epidermal cells. Transcript profiling established that the gene was most highly expressed in the stem apex. The heterologous expression of CmTPL1-1 in Arabidopsis thaliana produced a pleiotropic phenotype, including smaller leaves, shorter siliques, increased meristem number, asymmetrical petal distribution and reduced stamen number. In transgenic plants, four AtARFs were downregulated, while six AtIAAs and two AtGH3s were upregulated at the transcript level; moreover, the expression of three key class I KNOTTED-like homeobox (KNOX) genes was upregulated. In addition, by yeast two-hybrid screening of a chrysanthemum cDNA library, we found that CmTPL1-1 could interact with CmWOX4, CmLBD38 and CmLBD36, and these interactions were confirmed by bimolecular fluorescence complementation (BiFC) assays. Overall, we speculated that heterologous expression of CmTPL1-1 regulates plant growth and development by interacting with auxin signaling in Arabidopsis.
Assuntos
Arabidopsis/fisiologia , Chrysanthemum/genética , Proteínas Correpressoras/fisiologia , Meristema/fisiologia , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Proteínas Correpressoras/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologiaRESUMO
The switch from vegetative growth to reproductive growth is a key event in the development of a plant. Here, the product of the chrysanthemum gene CmMYB2, an R2R3 MYB transcription factor that is localized in the nucleus, was shown to be a component of the switching mechanism. Plants engineered to overexpress CmMYB2 flowered earlier than did wild-type plants, while those in which CmMYB2 was suppressed flowered later. In both the overexpression and RNAi knockdown plants, a number of genes encoding proteins involved in gibberellin synthesis or signaling, as well as in the response to photoperiod, were transcribed at a level that differed from that in the wild type. Both yeast two-hybrid and bimolecular fluorescence complementation assays revealed that CmMYB2 interacts with CmBBX24, a zinc-finger transcription factor known to regulate flowering by its influence on gibberellin synthesis.
RESUMO
SrUGT76G1 is vital for the biosynthesis of rebaudioside A, D and M in Stevia rebaudiana Bertoni; however, its transcriptional regulatory mechanism remains unknown. In this study, the 2050-bp promoter region of SrUGT76G1 was isolated by the TAIL-PCR method, and sequence analysis revealed the presence of several W-box cis-elements, which are the recognition motifs of WRKY transcription factors. Furthermore, SrWRKY71, characterized by a typical WRKY domain and a C2H2 zinc finger-like motif, was identified as a putative transcriptional regulator of SrUGT76G1. The transcript of SrWRKY71 predominantly accumulated in leaves and was present at a lower level in stems, roots and flowers. The SrWRKY71-GFP fusion protein was specifically localized to the nucleus in tobacco epidermal cells. In addition, the N and C terminal regions of SrWRKY71 contributed to its transactivation activity. Y1H and EMSA assays validated that SrWRKY71 binds directly to W-box1 and W-box2 in the proximal promoter region of SrUGT76G1. Moreover, SrWRKY71 represses the expression level of SrUGT76G1 in both tobacco leaves and stevia callus. Taken together, the data in this study represent the first identification of an essential upstream transcription factor of SrUGT76G1 and provides new insight into the regulatory network of steviol glycoside biosynthesis in Stevia rebaudiana.
Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Stevia , Fatores de Transcrição , Diterpenos do Tipo Caurano/metabolismo , Genes de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Stevia/genética , Stevia/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Chrysanthemum morifolium is one of the most popular ornamental species worldwide, with high ornamental and economic value. Petal size is an important factor that influences the ornamental value. CmTCP20 is a member of TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs) gene family, which is closely associated with the growth and development of plants. Our previous study found that the expression of CmTCP20 was obviously down-regulated during chrysanthemum petal elongation, but its function in petal elongation has not yet been revealed. We show here that the overexpression CmTCP20 in Arabidopsis and chrysanthemum leads to similar phenotypes, including larger flower buds (or inflorescences) and longer petals. Interestingly, ectopic expression in Schizosaccharomyces pombe yeast cells showed that CmTCP20 could repress cell division and promote cell elongation. Moreover, the yeast two-hybrid, BiFC and pull-down experimental results indicated that CmTCP20 may regulate petal size via interacting with CmJAZ1-like and inducing down-regulation of CmBPE2 gene expression. This study preliminarily clarifies the function of CmTCP20 on chrysanthemum petal elongation, providing the basic theory for improving the ornamental characteristic of chrysanthemum.