Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 49, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792982

RESUMO

BACKGROUND: A wide range of tools are available for the detection of copy number variants (CNVs) from whole-genome sequencing (WGS) data. However, none of them focus on clinically-relevant CNVs, such as those that are associated with known genetic syndromes. Such variants are often large in size, typically 1-5 Mb, but currently available CNV callers have been developed and benchmarked for the discovery of smaller variants. Thus, the ability of these programs to detect tens of real syndromic CNVs remains largely unknown. RESULTS: Here we present ConanVarvar, a tool which implements a complete workflow for the targeted analysis of large germline CNVs from WGS data. ConanVarvar comes with an intuitive R Shiny graphical user interface and annotates identified variants with information about 56 associated syndromic conditions. We benchmarked ConanVarvar and four other programs on a dataset containing real and simulated syndromic CNVs larger than 1 Mb. In comparison to other tools, ConanVarvar reports 10-30 times less false-positive variants without compromising sensitivity and is quicker to run, especially on large batches of samples. CONCLUSIONS: ConanVarvar is a useful instrument for primary analysis in disease sequencing studies, where large CNVs could be the cause of disease.


Assuntos
Variações do Número de Cópias de DNA , Células Germinativas , Sequenciamento Completo do Genoma , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala
2.
Am Heart J ; 244: 1-13, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670123

RESUMO

BACKGROUND: The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS: Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION: We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.


Assuntos
Cardiopatias Congênitas , Transposição dos Grandes Vasos , Artérias , Encéfalo/diagnóstico por imagem , Cardiopatias Congênitas/genética , Humanos , Recém-Nascido , Transposição dos Grandes Vasos/genética , Sequenciamento Completo do Genoma
3.
HGG Adv ; 5(2): 100262, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38192100

RESUMO

Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their "silent" mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.


Assuntos
Mutação Silenciosa , Humanos , Sequência de Bases , Códon/genética , Sequência de Aminoácidos , Análise de Sequência de DNA
4.
NAR Genom Bioinform ; 6(3): lqae111, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39211329

RESUMO

Interpretation of genetic variants remains challenging, partly due to the lack of well-established ways of determining the potential pathogenicity of genetic variation, especially for understudied classes of variants. Addressing this, population genetics methods offer a practical solution by evaluating variant effects through human population distributions. Negative selection influences the ratio of singleton variants and can serve as a proxy for deleteriousness, as exemplified by the Mutability-Adjusted Proportion of Singletons (MAPS) metric. However, MAPS is sensitive to the calibration of the singletons-by-mutability linear model, which results in biased estimates for certain variant classes. Building up on the methodology used in MAPS, we introduce the Context-Adjusted Proportion of Singletons (CAPS) metric for assessing negative selection in the human genome. CAPS produces corrected estimates with more accurate confidence intervals by eliminating the mutability layer in the model. Retaining the advantageous features of MAPS, CAPS emerges as a robust and reliable tool. We believe that CAPS has the potential to enhance the identification of new disease-variant associations in clinical and research settings, offering improved accuracy in assessing negative selection for diverse SNV classes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA