Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 256: 119273, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38821465

RESUMO

Insecticide resistance poses a significant challenge in managing generalist herbivores such as the tobacco cutworm (TCW), Spodoptera litura. This study investigates the potential risks associated with using the novel diamide insecticide tetraniliprole to control TCW. A tetraniliprole-resistant strain was developed through twelve generations of laboratory selection, indicating an intermediate risk of resistance development. Field monitoring in China revealed a significant incidence of resistance, particularly in the Nanchang (NC) population (>100-fold). Tetraniliprole showed moderate to high cross-resistance to multiple insecticides and was autosomally inherited with incomplete dominance, controlled by multiple genes, some of which belong to the cytochrome P450 family associated with enhanced detoxification. Life table studies indicated transgenerational hormesis, stimulating TCW female fecundity and increasing population net reproduction rates (R0). These findings suggest a potential for pest resurgence under tetraniliprole use. The integrated risk assessment provides a basis for the sustainable management of TCW using tetraniliprole.


Assuntos
Inseticidas , Spodoptera , Animais , Medição de Risco , Spodoptera/efeitos dos fármacos , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Herbivoria , China , Feminino , Larva/efeitos dos fármacos
2.
Environ Res ; 237(Pt 1): 116876, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573021

RESUMO

An increasing number of studies have reported stimulation of various organisms in the presence of environmental contaminants. This has created a need to critically evaluate sublethal stimulation and hormetic responses of arthropod parasitoids and parasites following exposure to pesticides and other contaminants. Examining this phenomenon with a focus on arthropods of agricultural and environmental importance serves as the framework for this literature review. This review shows that several pesticides, with diverse chemical structures and different modes of action, applied individually or in combination at sublethal doses, commonly stimulate an array of arthropod parasitoids and parasites. Exposure at sublethal doses can enhance responses related to physiology (e.g., respiration, total lipid content, and total protein content), behavior (e.g., locomotor activity, antennal drumming frequency, host location, and parasitization), and fitness (longevity, growth, fecundity, population net and gross reproduction). Concordantly, the parasitic potential (e.g., infestation efficacy, parasitization rate, and parasitoid/parasite emergence) can be increased, and as a result host activities inhibited. There is some evidence illustrating hormetic dose-responses, but the relevant literature commonly included a limited number and range of doses, precluding a robust differentiation between sub- and superNOAEL (no-observed-adverse-effect level) stimulation. These results reveal a potentially significant threat to ecological health, through stimulation of harmful parasitic organisms by environmental contaminants, and highlight the need to include sublethal stimulation and hormetic responses in relevant ecological pesticide risk assessments. Curiously, considering a more utilitarian view, hormesis may also assist in optimizing mass rearing of biological control agents for field use, a possibility that also remains neglected.

3.
Ecotoxicol Environ Saf ; 203: 110947, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678751

RESUMO

Cyantraniliprole was recently registered for controlling the coffee berry borer Hypothenemus hampei, the main coffee pest in the world. In this study, baseline determination and resistance monitoring to cyantraniliprole were carried out in Brazilian populations of H. hampei. Evaluations were carried out for three years with representative field-collected populations from nine coffee-producing states in Brazil, using artificial diet containing the insecticide. The likelihood of control failure due to cyantraniliprole resistance was also determined. Populations from Campo do Meio, Linhares and Jaú were more susceptible (<2-fold resistance) to cyantraniliprole than populations from Patrocínio and Londrina (17-fold). Nonetheless, the frequency of cyantraniliprole resistance insects was low and not significant throughout the regions survey and the likelihood of control failure was negligible. Therefore, cyantraniliprole remains an important management tool against the coffee berry borer without current problems of control failure. However, enough field variation in susceptibility to cyantraniliprole exists justifying attention and careful management of this insecticide to prevent quick development of insecticide resistance in populations of this insect pest species.


Assuntos
Coffea/parasitologia , Controle de Insetos/métodos , Resistência a Inseticidas , Inseticidas/farmacologia , Pirazóis/farmacologia , Gorgulhos/efeitos dos fármacos , ortoaminobenzoatos/farmacologia , Animais , Brasil , Coffea/crescimento & desenvolvimento , Probabilidade , Inquéritos e Questionários
4.
J Therm Biol ; 94: 102774, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33293005

RESUMO

Insects face several (environmental) abiotic stressors, including low temperature, which cause the failure of neuromuscular function. Such exposure leads insects toa reversible comatose state termed chill-coma, but the consequences of this state for the organism biology were little explored. Here, the consequences of the chill-coma phase were investigated in two of the main stored product pest species - the red flour beetle Tribolium castaneum (larvae and adults) and the rice weevil Sitophilus oryzae (adults). For this purpose, a series of low-temperature shocks were used to estimate the chill-coma recovery time (CCRT), survival, nutrition and weight gain/growth of T. castaneum (larvae and adults) and S. oryzae, as well as the development of T. castaneum life stages. The relatively long CCRT was characteristic of beetle larvae, at different low-temperature shocks, and CCRT increased with decreasing temperatures and increasing exposure intervals for both pest species. The survival was little affected by the low-temperature shocks applied, but such shocks affected insect feeding and growth. Tribolium castaneum larvae was more sensitive than adults of both insect species. Moreover, the relative consumption and weight gain of S. oryzae adults were lower than those of T. castaneum adults and mainly larvae, while feeding deterrence was not affected by low temperature shocks, unlike food conversion efficiency. Low-temperature shocks, even under short duration at some temperatures, significantly delayed development. The lower the temperature and the higher the exposure period, the more delayed the development. Thus, the physiological costs of chill-coma are translated into life-history consequences, with potential implications for the management of this insect pest species in stored products and even more so on red flour beetles and rice weevils.


Assuntos
Regulação da Temperatura Corporal , Resposta ao Choque Frio/fisiologia , Tribolium/fisiologia , Gorgulhos/fisiologia , Animais , Ingestão de Alimentos , Larva/fisiologia , Temperatura
5.
Ecotoxicol Environ Saf ; 183: 109577, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446171

RESUMO

The biphasic dose-response of a stressor where low amounts of a toxicant may stimulate some biological processes is a recent focus of attention in insecticide ecotoxicology. Nonetheless, the importance and management consequences of this phenomenon of pesticide-induced hormesis remain largely unrecognized. Curiously, the potential induction of hormesis by insecticidal proteins such as Bacillus thuringiensis toxins (i.e., Bt toxins), a major agriculture pest management tool of widespread use, has been wholly neglected. Thus, we aimed to circumvent this shortcoming while assessing the potential occurrence of hormesis induced by the Bt toxin Cry1Fa in its main target pest species - the fall armyworm Spodoptera frugiperda. Concentration-response bioassays were carried out in a Bt-susceptible and a Bt-resistant population providing the purified Cry1Fa toxin in artificial diet and recording the insect demographic parameters. As significant hormetic effect was detected in both populations with a significant increase in the net reproductive rate and the intrinsic rate of population growth, the potential occurrence of Bt-induced hormesis was subsequently tested providing the insects with leaves from transgenic Bt maize expressing the toxic protein. The performance of the Bt-resistant insects was not different in both maize genotypes, indicating that the leaf expression of the Bt protein did not promote hormesis in the resistant insects. Thus, despite the Bt-induced hormesis detected in the purified protein bioassays, the phenomenon was not detected with current levels of Bt expression in maize minimizing the risk of this additional efficacy constraint besides that of field occurrence of Bt resistance.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Hormese/efeitos dos fármacos , Inseticidas/toxicidade , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Resistência a Inseticidas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Spodoptera/efeitos dos fármacos , Zea mays/genética , Zea mays/metabolismo
6.
Pestic Biochem Physiol ; 156: 87-95, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027585

RESUMO

Environmental pollutants, such as insecticides, can alter the equilibrium of aquatic ecosystems, particularly those closely located to human occupations. The use of such anthropogenic compounds frequently results in the selection of resistant individuals. However, how the underlying insecticide resistance mechanisms interplay with the abilities of the resistant individuals to cope with other environmental challenges (e.g., predators) has not received adequate attention. Here, we evaluated whether resistance to pyrethroid insecticides in larvae of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae), would affect their abilities to survive other environmental challenges. We assessed the susceptibilities of the pyrethroid-resistant larvae to other insecticides (i.e., the oxadiazine indoxacarb and juvenile hormone mimic pyriproxyfen) and determined the activities of potential detoxification enzymes. Finally, we also recorded potential alterations in larva swimming behavior in the presence of predators, such as the water bug Belostoma anurum (Hemiptera: Belostomatidae). Our results revealed that high pyrethroid resistance was associated with moderate resistance to the other two insecticides. Furthermore, this multiple resistance was associated with higher detoxification activity by glutathione-S-transferases and general esterases. Interestingly, in comparison with insecticide-susceptible larvae, the pyrethroid-resistant larvae not only swam for longer periods and distances, but also took longer to be captured by B. anurum nymphs. Collectively, our findings revealed increased abilities to survive natural environmental challenges (e.g., predatory attacks) in mosquito larvae that express physiological and behavioral changes associated with multiple resistance to insecticides.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Animais , Bioensaio , Resistência a Inseticidas , Nitrilas/farmacologia , Piretrinas/farmacologia
7.
Annu Rev Entomol ; 63: 239-258, 2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28977774

RESUMO

The South American tomato pinworm, Tuta absoluta (Meyrick), is native to the western Neotropics. After invading Spain in 2006, it spread rapidly throughout Afro-Eurasia and has become a major threat to world tomato production. Integrated pest management (IPM) strategies have been developed, but widespread insecticide use has caused selection for insecticide resistance as well as undesirable effects on key beneficial arthropods. Augmentation and conservation biological control relying on omnivorous mirid predators has proved successful for management of T. absoluta, where implementation is dependent on abiotic, biotic (e.g., alternative prey), and anthropogenic factors (e.g., pesticides). Research has been carried out on larval parasitoids, showing potential for further development of sustainable control. The development of resistant tomato varieties is ongoing, but they are not commercially available yet. Knowledge gaps remain to be filled to optimize IPM packages on tomato crops and to help prevent further spread worldwide.


Assuntos
Controle de Insetos/tendências , Espécies Introduzidas , Mariposas , Animais , Solanum lycopersicum
9.
Mem Inst Oswaldo Cruz ; 111(5): 311-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27143489

RESUMO

The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.


Assuntos
Aedes/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Temefós/farmacologia , Animais , Bioensaio , Brasil , Larva/efeitos dos fármacos , Análise Espaço-Temporal
10.
Ecotoxicology ; 24(1): 130-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300506

RESUMO

Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. Nonetheless, only few studies have been carried out with pollinators, usually emphasizing the honeybee Apis mellifera and neglecting other important pollinator species such as the bumblebee Bombus terrestris. Here, lethal and sublethal effects of azadirachtin were studied on B. terrestris via oral exposure in the laboratory to bring out the potential risks of the compound to this important pollinator. The compound was tested at different concentrations above and below the maximum concentration that is used in the field (32 mg L(-1)). As most important results, azadirachtin repelled bumblebee workers in a concentration-dependent manner. The median repellence concentration (RC50) was estimated as 504 mg L(-1). Microcolonies chronically exposed to azadirachtin via treated sugar water during 11 weeks in the laboratory exhibited a high mortality ranging from 32 to 100 % with a range of concentrations between 3.2 and 320 mg L(-1). Moreover, no reproduction was scored when concentrations were higher than 3.2 mg L(-1). At 3.2 mg L(-1), azadirachtin significantly inhibited the egg-laying and, consequently, the production of drones during 6 weeks. Ovarian length decreased with the increase of the azadirachtin concentration. When azadirachtin was tested under an experimental setup in the laboratory where bumblebees need to forage for food, the sublethal effects were stronger as the numbers of drones were reduced already with a concentration of 0.64 mg L(-1). Besides, a negative correlation was found between the body mass of male offspring and azadirachtin concentration. In conclusion, our results as performed in the laboratory demonstrated that azadirachtin can affect B. terrestris with a range of sublethal effects. Taking into account that sublethal effects are as important as lethal effects for the development and survival of the colonies of B. terrestris, this study confirms the need to test compounds on their safety, especially when they have to perform complex tasks such as foraging. The latter agrees with the recent European Food Safety Authority guidelines to assess 'potentially deleterious' compounds for sublethal effects on behavior.


Assuntos
Abelhas/efeitos dos fármacos , Monitoramento Ambiental , Inseticidas/toxicidade , Limoninas/toxicidade , Animais , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Masculino , Reprodução/efeitos dos fármacos , Testes de Toxicidade Crônica
11.
J Econ Entomol ; 108(1): 362-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470140

RESUMO

The control of the most important pest of stored maize, the weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), is mainly achieved with the use of pyrethroid insecticides. However, the intensive use of these compounds has led to the selection of resistant populations and has compromised the control efficacy of this insect pest. Here, the toxicity of indoxacarb for a potential use in the control of S. zeamais was assessed on 13 Brazilian populations. Concentration-mortality bioassays, in the presence of synergists (piperonyl butoxide, triphenyl phosphate, and diethyl maleate), were used to assess potential metabolic-based indoxacarb resistance mechanisms. We also assessed the behavioral (locomotory) responses of these populations to indoxacarb exposure. The results showed significant differences between the populations (LD50 values ranged from 0.06 to 13.99 mg a.i/kg of grains), resulting in resistance ratios of >200-fold between the least (Canarana-MT) and the most (Espirito Santo do Pinhal-SP) susceptible populations. The results obtained with synergized indoxacarb suggest the involvement of esterases and glutathione-S-transferases on indoxacarb action, and also suggest the involvement of cytochrome P450-dependent monooxygenases as a potential indoxacarb resistance mechanism in Brazilian populations of S. zeamais. Although indoxacarb-induced behavioral avoidance varied among populations, some resistant populations (e.g., Canarana-MT) were able to reduce exposure to indoxacarb by spending more time in the nontreated areas. Collectively, our findings indicate that the behavioral (locomotory) and physiological responses of these insects may compromise the control efficacy of oxadiazine insecticides (e.g., indoxacarb) in Brazilian populations of S. zeamais.


Assuntos
Oxazinas , Gorgulhos/metabolismo , Animais , Comportamento Animal , Resistência a Inseticidas/fisiologia
12.
Sci Total Environ ; 949: 175165, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084370

RESUMO

Emerging evidence reveals that low doses of stress stimulate, and high doses suppress, organism responses - a phenomenon known as hormesis. Here, we propose a framework for harnessing hormesis principles to optimize agrochemical use and mitigate pollution. We discuss how hormesis can be applied in agrochemical context and highlight challenges and needs beyond scientific research, offering a perspective for sustainable environmental solutions.


Assuntos
Agroquímicos , Poluição Ambiental , Hormese , Poluição Ambiental/prevenção & controle , Recuperação e Remediação Ambiental/métodos
13.
Pest Manag Sci ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082239

RESUMO

BACKGROUND: Managing pest species of eusocial insects, such as leaf-cutting ants, poses significant challenges. Controlling them requires understanding of how toxic plant substrates and ant baits are recognized by foragers, transported to the nest, shared among workers and managed by gardeners cultivating the symbiont fungus garden. Despite this, little is known about how unsuitable resources might impact social interactions within ant colonies. This study aims to investigate whether the provision of a suitable substrate (copperleaf) and a toxic substrate (nasturtium leaves) affects the social network dynamics within colonies of two leaf-cutting ant species: Acromyrmex molestans and Acromyrmex subterraneus. The interactions between castes were recorded and subjected to social network analyses. RESULTS: Initial foraging duration increased for A. subterraneus provided with copperleaf, although no difference was observed for the other species and resource combinations. The social network structure was similar for both species when copperleaf leaves were provided as a substrate. However, notable alterations occurred with nasturtium leaf provision, leading to higher integration of gardeners in interactions and noticeable changes in the generalist worker network centrality, particularly in A. subterraneus. DISCUSSION: The observed changes in social interactions, particularly in A. subterraneus, suggest that increasing gardener interactions with other castes expedites the movement of the substrate within the colony. This maximizes the potential toxic effect on the colony. © 2024 Society of Chemical Industry.

14.
J Econ Entomol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023256

RESUMO

Social insect pests, particularly leaf-cutting ants, present a considerable challenge in terms of control. Leaf-cutting ants are significant agricultural, forestry, and pasture pests, and understanding their behavior and defense mechanisms is essential for managing their colonies effectively. While toxic ant baits are a primary control method, the limited availability of effective insecticides and concerns over their hazardous nature has spurred the search for alternative solutions, particularly natural compounds, which aligns with the goals of forest certification groups. In the light of previous evidence demonstrating the efficacy of nasturtium leaves (Tropaeolum majus L. (Brassicales: Tropaeolaceae)) in suppressing leaf-cutting ant colonies, this study investigates 2 active components of nasturtium leaf extracts: diphenyl disulfide and lyral. We tested their impact on Atta sexdens (L.) (Hymenoptera: Formicidae), the most prevalent leaf-cutter ant species in Brazil, and their symbiotic fungus, Leucoagaricus gongylophorus (Möller) Singer (Agaricales: Agaricaceae). We conducted experiments with increasing concentrations of diphenyl disulfide and lyral, assessing their effects on the symbiotic fungus and on forager workers and gardeners of A. sexdens colonies. Our findings revealed no fungicidal activity, and ant mortality was minimal in both topical and ingestion bioassays with the exception of gardeners topically exposed to diphenyl sulfide. Furthermore, the compounds did not affect leaf ingestion, but diphenyl disulfide did increase interactions among foragers. These results suggest that neither diphenyl disulfide nor lyral are the primary contributors to the suppression of leaf-cutting ant colonies by nasturtium leaves. However, they may enhance the formicidal activity of other compounds present in nasturtium leaves.

15.
Sci Total Environ ; 951: 175467, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39155008

RESUMO

Recent years have witnessed heightened scrutiny of the non-target sublethal effects of pesticides on behavioural and physiological traits of insects. Traditionally, attention has focused on investigating pesticides' primary modes of action, often overlooking the potential secondary mechanisms. This review brings forth the nuanced impacts of sublethal pesticide exposure on the immune system of target and non-target insect species. Pesticides, such as for example neonicotinoids, suppress immune response, while others, like certain organophosphates and some insect growth regulators (IGRs), appear to bolster immunocompetence under certain circumstances. Beyond their individual impacts, the synergic effects of pesticide mixtures on insect immunity are garnering increasing interest. This review thus summarizes recent advances in the immunomodulatory effects of pesticides, detailing both mechanisms and consequences of such interactions. The implications of these effects for ecosystem preservation and viability of beneficial organisms, such as pollinators and natural enemies of pests, are discussed. The review also considers further research directions on pesticide secondary modes of action and explores potential implications for integrated pest management (IPM) programs, as several model organisms studied are crop pest species. While current data provide an expansive overview of how insect innate immunity is modulated, concrete endpoints remain elusive requiring further research into pesticide secondary modes of actions.

16.
Acta Trop ; 258: 107367, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173726

RESUMO

Chagas disease, a neglected global health concern primarily transmitted through the bite and feces of kissing bugs, has garnered increasing attention due to recent outbreaks in northern Brazil, highlighting the role of oral transmission facilitated by the kissing bugs species Rhodnius robustus and Rhodnius pictipes. These vectors are associated with palm trees with large crowns, such as the maripa palm (Attalea maripa) and moriche palm (Mauritia flexuosa). In this study, we employ maximum entropy (MaxEnt) ecological niche models to analyze the spatial distribution of these vectors and palm species, predicting current and future climate suitability. Our models indicate broader potential habitats than documented occurrences, with high suitability in northern South America, southern Central America, central Africa, and southeast Asia. Projections suggest increased climate suitability by 2040, followed by a reduction by 2080. This study identifies present and future areas suitable for kissing bugs and palm tree species due to climate change, aiding in the design of prevention and management strategies.


Assuntos
Arecaceae , Doença de Chagas , Insetos Vetores , Rhodnius , Doença de Chagas/transmissão , Doença de Chagas/epidemiologia , Animais , Rhodnius/parasitologia , Rhodnius/fisiologia , Arecaceae/parasitologia , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Humanos , Ecossistema , Brasil/epidemiologia , Mudança Climática
17.
Trends Plant Sci ; 28(1): 14-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280534

RESUMO

Low doses of contaminants and toxins can stimulate pests feeding on contaminated tissues of host plants and enhance herbivore activity and plant damage. These effects are opposite to those of high toxic doses, have largely been missed so far, and could compromise crop production. Thus, they deserve further consideration and study.


Assuntos
Poluentes Ambientais , Herbivoria , Hormese , Plantas/química , Poluentes Ambientais/farmacologia , Herbivoria/efeitos dos fármacos
18.
Plants (Basel) ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679031

RESUMO

A 76-year literature survey and meta-analyses were carried out to recognize the trends, biases, and knowledge gaps of studies focusing on major groups of compounds of botanical origin, or phytochemicals, as insecticides. The survey found that the main phytochemicals prospected as insecticides belong to the following major chemical groups: terpenoids, terpenes, and carbonyl, all of which were tested, mainly against beetles (Coleoptera), caterpillars (i.e., larvae of Lepidoptera), and mosquitoes and other flies (i.e., Diptera). These studies are burgeoning at an exponential rate, with an evident focus on mortality endpoint estimates, but they are also neglecting sublethal assessments. China and India in Asia, as well as Brazil in the Americas, were responsible for most studies. The majority of the papers used stored grain insects as experimental models, which limits the applicability and representativeness of the findings. As a result, the main modes of exposure tested were fumigation and contact, which leads to the prevalence of estimates of lethal concentration in these studies. Therefore, a broader range of insect species deserves testing, with suitable modes of exposure identifying and characterizing the main molecules responsible for the insecticidal activity, which is seldom performed. Attention to these needs will circumvent current biases and allow the recognition of the main patterns of association between the origin and structure of phytochemicals and their insecticidal effects.

19.
Environ Pollut ; 336: 122422, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604394

RESUMO

Sublethal stimulation and hormetic responses are increasingly identified and acknowledged in scientific research. However, the occurrence and characteristics of such responses in insect vectors of pathogens are little explored and poorly understood. Here, we collate significant evidence from the scientific literature showing that sublethal doses of environmental contaminants, such as pesticides, microplastics, and plasticizers, induce stimulation and hormetic responses in insect vectors of pathogens of agricultural and public health importance, including mosquitoes, other dipterans, psyllids, aphids, and planthoppers. Physiological, behavioral, and demographic traits can be enhanced by exposure to lower subtoxic contaminant doses while being inhibited by higher toxic doses. Energetic trade-offs can also occur, especially at sublethal doses higher than the no-observed-adverse-effect level (NOAEL). The relevant literature is limited and so are the number of doses commonly included in the studies, precluding firm conclusions and enhanced understanding. Nevertheless, these effects are significant and could undermine human and environmental health, and thus sustainability agendas, if ultimately the transmission of pathogens and disease spread and severity are increased. Further research is urgently needed to tackle these phenomena, especially under field conditions. The findings discussed here are relevant to chemical risk assessment and chemical safety evaluations, in which all possible effects from the lowest to higher doses should be considered.

20.
Sci Total Environ ; 878: 162989, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36948307

RESUMO

Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.


Assuntos
Artrópodes , Praguicidas , Animais , Estimulação Química , Praguicidas/toxicidade , Agricultura , Produção Agrícola , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA