Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35700230

RESUMO

Sublineages (SLs) within microbial species can differ widely in their ecology and pathogenicity, and their precise definition is important in basic research and for industrial or public health applications. Widely accepted strategies to define SLs are currently missing, which confuses communication in population biology and epidemiological surveillance. Here, we propose a broadly applicable genomic classification and nomenclature approach for bacterial strains, using the prominent public health threat Klebsiella pneumoniae as a model. Based on a 629-gene core genome multilocus sequence typing (cgMLST) scheme, we devised a dual barcoding system that combines multilevel single linkage (MLSL) clustering and life identification numbers (LINs). Phylogenetic and clustering analyses of >7,000 genome sequences captured population structure discontinuities, which were used to guide the definition of 10 infraspecific genetic dissimilarity thresholds. The widely used 7-gene multilocus sequence typing (MLST) nomenclature was mapped onto MLSL SLs (threshold: 190 allelic mismatches) and clonal group (threshold: 43) identifiers for backwards nomenclature compatibility. The taxonomy is publicly accessible through a community-curated platform (https://bigsdb.pasteur.fr/klebsiella), which also enables external users' genomic sequences identification. The proposed strain taxonomy combines two phylogenetically informative barcode systems that provide full stability (LIN codes) and nomenclatural continuity with previous nomenclature (MLSL). This species-specific dual barcoding strategy for the genomic taxonomy of microbial strains is broadly applicable and should contribute to unify global and cross-sector collaborative knowledge on the emergence and microevolution of bacterial pathogens.


Assuntos
Genoma Bacteriano , Klebsiella pneumoniae , Genômica , Genótipo , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Filogenia
2.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748538

RESUMO

Group A Streptococcus (GAS) M and M-like proteins are essential virulence factors and represent the primary epidemiological marker of this pathogen. Protein sequences encoding 1054 M, Mrp and Enn proteins, from 1668 GAS genomes, were analysed by SplitsTree4, partitioning around medoids and co-occurrence. The splits network and groups-based analysis of all M and M-like proteins revealed four large protein groupings, with multiple evolutionary histories as represented by multiple edges for most splits, leading to 'M-family-groups' (FG) of protein sequences: FG I, Mrp; FG II, M protein and Protein H; FG III, Enn; and FG IV, M protein. M and Enn proteins formed two groups with nine sub-groups and Mrp proteins formed four groups with ten sub-groups. Discrete co-occurrence of M and M-like proteins were identified suggesting that while dynamic, evolution may be constrained by a combination of functional and virulence attributes. At a granular level, four distinct family-groups of M, Enn and Mrp proteins are observable, with Mrp representing the most genetically distinct of the family-group of proteins. While M and Enn protein families generally group into three distinct family-groups, horizontal and vertical gene flow between distinct GAS strains is ongoing.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Fatores de Virulência/genética
3.
Nucleic Acids Res ; 48(18): 10142-10156, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976577

RESUMO

B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/classificação , Eucariotos/enzimologia , Evolução Molecular , Archaea/enzimologia , Bactérias/enzimologia , Vírus de DNA/enzimologia , Bases de Dados de Proteínas
4.
Proc Natl Acad Sci U S A ; 116(39): 19585-19592, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31506349

RESUMO

Giant and large eukaryotic double-stranded DNA viruses from the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) assemblage represent a remarkably diverse and potentially ancient component of the eukaryotic virome. However, their origin(s), evolution, and potential roles in the emergence of modern eukaryotes remain subjects of intense debate. Here we present robust phylogenetic trees of NCLDVs, based on the 8 most conserved proteins responsible for virion morphogenesis and informational processes. Our results uncover the evolutionary relationships between different NCLDV families and support the existence of 2 superclades of NCLDVs, each encompassing several families. We present evidence strongly suggesting that the NCLDV core genes, which are involved in both informational processes and virion formation, were acquired vertically from a common ancestor. Among them, the largest subunits of the DNA-dependent RNA polymerase were transferred between 2 clades of NCLDVs and proto-eukaryotes, giving rise to 2 of the 3 eukaryotic DNA-dependent RNA polymerases. Our results strongly suggest that these transfers and the diversification of NCLDVs predated the emergence of modern eukaryotes, emphasizing the major role of viruses in the evolution of cellular domains.


Assuntos
Evolução Biológica , Eucariotos/genética , Vírus Gigantes/genética , Núcleo Celular/genética , Citoplasma/virologia , Vírus de DNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Células Eucarióticas/metabolismo , Evolução Molecular , Vírus Gigantes/metabolismo , Filogenia
5.
Proc Natl Acad Sci U S A ; 116(35): 17498-17508, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413195

RESUMO

Transmission of Plasmodium falciparum involves a complex process that starts with the ingestion of gametocytes by female Anopheles mosquitoes during a blood meal. Activation of gametocytes in the mosquito midgut triggers "rounding up" followed by egress of both male and female gametes. Egress requires secretion of a perforin-like protein, PfPLP2, from intracellular vesicles to the periphery, which leads to destabilization of peripheral membranes. Male gametes also develop flagella, which assist in binding female gametes for fertilization. This process of gametogenesis, which is key to malaria transmission, involves extensive membrane remodeling as well as vesicular discharge. Phospholipase A2 enzymes (PLA2) are known to mediate membrane remodeling and vesicle secretion in diverse organisms. Here, we show that a P. falciparum patatin-like phospholipase (PfPATPL1) with PLA2 activity plays a key role in gametogenesis. Conditional deletion of the gene encoding PfPATPL1 does not affect P. falciparum blood stage growth or gametocyte development but reduces efficiency of rounding up, egress, and exflagellation of gametocytes following activation. Interestingly, deletion of the PfPATPL1 gene inhibits secretion of PfPLP2, reducing the efficiency of gamete egress. Deletion of PfPATPL1 also reduces the efficiency of oocyst formation in mosquitoes. These studies demonstrate that PfPATPL1 plays a role in gametogenesis, thereby identifying PLA2 phospholipases such as PfPATPL1 as potential targets for the development of drugs to block malaria transmission.


Assuntos
Gametogênese , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Fosfolipases/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Biologia Computacional/métodos , Humanos , Estágios do Ciclo de Vida , Fosfolipases/genética , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/genética , Deleção de Sequência
6.
BMC Bioinformatics ; 22(1): 190, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853521

RESUMO

BACKGROUND: Harmonin Homogy Domains (HHD) are recently identified orphan domains of about 70 residues folded in a compact five alpha-helix bundle that proved to be versatile in terms of function, allowing for direct binding to a partner as well as regulating the affinity and specificity of adjacent domains for their own targets. Adding their small size and rather simple fold, HHDs appear as convenient modules to regulate protein-protein interactions in various biological contexts. Surprisingly, only nine HHDs have been detected in six proteins, mainly expressed in sensory neurons. RESULTS: Here, we built a profile Hidden Markov Model to screen the entire UniProtKB for new HHD-containing proteins. Every hit was manually annotated, using a clustering approach, confirming that only a few proteins contain HHDs. We report the phylogenetic coverage of each protein and build a phylogenetic tree to trace the evolution of HHDs. We suggest that a HHD ancestor is shared with Paired Amphipathic Helices (PAH) domains, a four-helix bundle partially sharing fold and functional properties. We characterized amino-acid sequences of the various HHDs using pairwise BLASTP scoring coupled with community clustering and manually assessed sequence features among each individual family. These sequence features were analyzed using reported structures as well as homology models to highlight structural motifs underlying HHDs fold. We show that functional divergence is carried out by subtle differences in sequences that automatized approaches failed to detect. CONCLUSIONS: We provide the first HHD databases, including sequences and conservation, phylogenic trees and a list of HHD variants found in the auditory system, which are available for the community. This case study highlights surprising phylogenetic properties found in orphan domains and will assist further studies of HHDs. We unveil the implication of HHDs in their various binding interfaces using conservation across families and a new protein-protein surface predictor. Finally, we discussed the functional consequences of three identified pathogenic HHD variants involved in Hoyeraal-Hreidarsson syndrome and of three newly reported pathogenic variants identified in patients suffering from Usher Syndrome.


Assuntos
Disceratose Congênita , Proteínas de Membrana , Sequência de Aminoácidos , Retardo do Crescimento Fetal , Humanos , Proteínas de Membrana/genética , Filogenia
7.
J Clin Microbiol ; 59(12): e0158121, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34524891

RESUMO

Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.


Assuntos
Corynebacterium diphtheriae , Difteria , Corynebacterium diphtheriae/genética , Difteria/epidemiologia , Difteria/microbiologia , Genoma Bacteriano , Genômica , Humanos , Tipagem de Sequências Multilocus , Filogenia
8.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33328176

RESUMO

Staphylococcus epidermidis is a pathogen emerging worldwide as a leading cause of health care-associated infections. A standardized high-resolution typing method to document transmission and dissemination of multidrug-resistant S. epidermidis strains is needed. Our aim was to provide a core genome multilocus sequence typing (cgMLST) scheme for S. epidermidis to improve the international surveillance of S. epidermidis We defined a cgMLST scheme based on 699 core genes and used it to investigate the population structure of the species and the genetic relatedness of isolates recovered from infants hospitalized in several wards of a French hospital. Our results show the long-lasting endemic persistence of S. epidermidis clones within and across wards of hospitals and demonstrate the ability of our cgMLST approach to identify and track these clones. We made the scheme publicly available through the Institut Pasteur BIGSdb server (http://bigsdb.pasteur.fr/epidermidis/). This tool should enable international harmonization of the epidemiological surveillance of multidrug-resistant S. epidermidis clones. By comparing gene distribution among infection and commensal isolates, we also confirmed the association of the mecA locus with infection isolates and of the fdh gene with commensal isolates. (This study has been registered at ClinicalTrials.gov under registration no. NCT03374371.).


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Células Clonais , Genoma Bacteriano/genética , Hospitais , Humanos , Tipagem de Sequências Multilocus , Infecções Estafilocócicas/epidemiologia , Staphylococcus epidermidis/genética
9.
Emerg Infect Dis ; 24(6): 988-994, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774847

RESUMO

Bordetella pertussis causes whooping cough, a highly contagious respiratory disease that is reemerging in many world regions. The spread of antigen-deficient strains may threaten acellular vaccine efficacy. Dynamics of strain transmission are poorly defined because of shortcomings in current strain genotyping methods. Our objective was to develop a whole-genome genotyping strategy with sufficient resolution for local epidemiologic questions and sufficient reproducibility to enable international comparisons of clinical isolates. We defined a core genome multilocus sequence typing scheme comprising 2,038 loci and demonstrated its congruence with whole-genome single-nucleotide polymorphism variation. Most cases of intrafamilial groups of isolates or of multiple isolates recovered from the same patient were distinguished from temporally and geographically cocirculating isolates. However, epidemiologically unrelated isolates were sometimes nearly undistinguishable. We set up a publicly accessible core genome multilocus sequence typing database to enable global comparisons of B. pertussis isolates, opening the way for internationally coordinated surveillance.


Assuntos
Bordetella pertussis/classificação , Bordetella pertussis/genética , Genoma Bacteriano , Genômica , Coqueluche/epidemiologia , Coqueluche/microbiologia , Alelos , Bordetella pertussis/isolamento & purificação , Surtos de Doenças , Genômica/métodos , Saúde Global , Humanos , Repetições Minissatélites , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único , Vigilância da População , Sequenciamento Completo do Genoma
11.
Antimicrob Agents Chemother ; 60(1): 703-8, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26574009

RESUMO

We describe the genome of a penicillinase-producing Kingella kingae strain (KWG1), the first to be isolated in continental Europe, whose bla(TEM-1) gene was, for the first time in this species, found to be chromosomally inserted. The bla(TEM) gene is located in an integrative and conjugative element (ICE) inserted in Met-tRNA and comprising genes that encode resistance to sulfonamides, streptomycin, and tetracycline. This ICE is homologous to resistance-conferring plasmids of K. kingae and other Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/química , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Kingella kingae/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Farmacorresistência Bacteriana/genética , Ontologia Genética , Humanos , Kingella kingae/efeitos dos fármacos , Kingella kingae/isolamento & purificação , Kingella kingae/metabolismo , Anotação de Sequência Molecular , Infecções por Neisseriaceae/microbiologia , Plasmídeos/química , Plasmídeos/metabolismo , Estreptomicina/farmacologia , Sulfonamidas/farmacologia , Tetraciclina/farmacologia , beta-Lactamases/metabolismo
12.
Nucleic Acids Res ; 42(9): 5715-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623814

RESUMO

Conjugation of DNA through a type IV secretion system (T4SS) drives horizontal gene transfer. Yet little is known on the diversity of these nanomachines. We previously found that T4SS can be divided in eight classes based on the phylogeny of the only ubiquitous protein of T4SS (VirB4). Here, we use an ab initio approach to identify protein families systematically and specifically associated with VirB4 in each class. We built profiles for these proteins and used them to scan 2262 genomes for the presence of T4SS. Our analysis led to the identification of thousands of occurrences of 116 protein families for a total of 1623 T4SS. Importantly, we could identify almost always in our profiles the essential genes of well-studied T4SS. This allowed us to build a database with the largest number of T4SS described to date. Using profile-profile alignments, we reveal many new cases of homology between components of distant classes of T4SS. We mapped these similarities on the T4SS phylogenetic tree and thus obtained the patterns of acquisition and loss of these protein families in the history of T4SS. The identification of the key VirB4-associated proteins paves the way toward experimental analysis of poorly characterized T4SS classes.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Conjugação Genética , Bases de Dados Genéticas , Transferência Genética Horizontal , Genes Bacterianos , Genoma Bacteriano , Plasmídeos/genética , Homologia de Sequência do Ácido Nucleico
13.
J Infect Dis ; 210(8): 1325-38, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24799598

RESUMO

Streptococcus pyogenes ranks among the main causes of mortality from bacterial infections worldwide. Currently there is no vaccine to prevent diseases such as rheumatic heart disease and invasive streptococcal infection. The streptococcal M protein that is used as the substrate for epidemiological typing is both a virulence factor and a vaccine antigen. Over 220 variants of this protein have been described, making comparisons between proteins difficult, and hindering M protein-based vaccine development. A functional classification based on 48 emm-clusters containing closely related M proteins that share binding and structural properties is proposed. The need for a paradigm shift from type-specific immunity against S. pyogenes to emm-cluster based immunity for this bacterium should be further investigated. Implementation of this emm-cluster-based system as a standard typing scheme for S. pyogenes will facilitate the design of future studies of M protein function, streptococcal virulence, epidemiological surveillance, and vaccine development.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes
14.
Mol Biol Evol ; 30(2): 315-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22977114

RESUMO

Genetic exchange by conjugation is responsible for the spread of resistance, virulence, and social traits among prokaryotes. Recent works unraveled the functioning of the underlying type IV secretion systems (T4SS) and its distribution and recruitment for other biological processes (exaptation), notably pathogenesis. We analyzed the phylogeny of key conjugation proteins to infer the evolutionary history of conjugation and T4SS. We show that single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) conjugation, while both based on a key AAA(+) ATPase, diverged before the last common ancestor of bacteria. The two key ATPases of ssDNA conjugation are monophyletic, having diverged at an early stage from dsDNA translocases. Our data suggest that ssDNA conjugation arose first in diderm bacteria, possibly Proteobacteria, and then spread to other bacterial phyla, including bacterial monoderms and Archaea. Identifiable T4SS fall within the eight monophyletic groups, determined by both taxonomy and structure of the cell envelope. Transfer to monoderms might have occurred only once, but followed diverse adaptive paths. Remarkably, some Firmicutes developed a new conjugation system based on an atypical relaxase and an ATPase derived from a dsDNA translocase. The observed evolutionary rates and patterns of presence/absence of specific T4SS proteins show that conjugation systems are often and independently exapted for other functions. This work brings a natural basis for the classification of all kinds of conjugative systems, thus tackling a problem that is growing as fast as genomic databases. Our analysis provides the first global picture of the evolution of conjugation and shows how a self-transferrable complex multiprotein system has adapted to different taxa and often been recruited by the host. As conjugation systems became specific to certain clades and cell envelopes, they may have biased the rate and direction of gene transfer by conjugation within prokaryotes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Evolução Biológica , Conjugação Genética , Adaptação Biológica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia
15.
PLoS Genet ; 7(8): e1002222, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876676

RESUMO

Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer.


Assuntos
Conjugação Genética , Variação Genética , Genoma , Células Procarióticas/metabolismo , Proteínas/genética , Cromossomos/genética , Evolução Molecular , Transferência Genética Horizontal , Genômica , Filogenia , Plasmídeos/genética , Proteínas/metabolismo
16.
Microbiol Spectr ; 12(6): e0050424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651883

RESUMO

Enteric yersiniosis, the third most common food-borne zoonosis in Europe, is mainly caused by the pathogen Yersinia enterocolitica. In France, the yersiniosis microbiological surveillance is conducted at the Yersinia National Reference Laboratory (YNRL). Since 2017, isolates have been characterized by whole genome sequencing (WGS) followed by a 500-gene Yersinia-cgMLST. We report here the data of the WGS-based surveillance on Y. enterocolitica isolates for the 2017-2021 period. The YNRL characterized 7,642 Y. enterocolitica strains distributed in 2,497 non-pathogenic isolates from lineages 1Aa and 1Ab, and 5,145 specimens belonging to 8 pathogenic lineages. Among pathogenic isolates, lineage 4 was the most common (87.2%) followed by lineages 2/3-9b (10.6%), 2/3-5a (1.2%), 2/3-9a (0.6%), 3-3b, 3-3c, 1B, and 3-3d (0.1% per each). Importantly, we developed a routine surveillance system based on a new typing method consisting of a 1,727-genes core genome Multilocus Sequence Typing (cgMLST) specific to the species Y. enterocolitica followed by isolate clustering. Thresholds of allelic distances (AD) were determined and fixed for the clustering of isolates: AD ≤ 5 for lineages 4, 2/3-5a, and 2/3-9a, and AD ≤ 3 for lineage 2/3-9b. Clustering programs were implemented in 2019 in routine surveillance to detect genomic clusters of pathogenic isolates. In total, 419 clusters with at least 2 isolates were identified, representing 2,504 of the 3,503 isolates characterized between 2019 and 2021. Most clusters (n = 325) comprised 2 to 5 isolates. The new typing method proved to be useful for the molecular investigation of unusual grouping of cases as well as for the detection of genomic clusters in routine surveillance. IMPORTANCE: We describe here the new typing method used for molecular surveillance of Yersinia enterocolitica infections in France based on a novel core genome Multilocus Sequence Typing (cgMLST) specific to Y. enterocolitica species. This method can reliably identify the pathogenic Y. enterocolitica subspecies and compare the isolates with a high discriminatory power. Between 2017 and 2021, 5,145 pathogenic isolates belonging to 8 lineages were characterized and lineage 4 was by far the most common followed by lineage 2/3-9b. A clustering program was implemented, and detection thresholds were cross-validated by the molecular and epidemiological investigation of three unusual groups of Y. enterocolitica infections. The routine molecular surveillance system has been able to detect genomic clusters, leading to epidemiological investigations.


Assuntos
Surtos de Doenças , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma , Yersiniose , Yersinia enterocolitica , Yersinia enterocolitica/genética , Yersinia enterocolitica/isolamento & purificação , Yersinia enterocolitica/classificação , Yersiniose/epidemiologia , Yersiniose/microbiologia , Humanos , França/epidemiologia , Tipagem de Sequências Multilocus/métodos , Filogenia , Genoma Bacteriano/genética , Genômica/métodos , Monitoramento Epidemiológico
17.
Nucleic Acids Res ; 39(13): 5513-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21422074

RESUMO

Type II toxin-antitoxin (TA) systems are generally composed of two genes organized in an operon, encoding a labile antitoxin and a stable toxin. They were first discovered on plasmids where they contribute to plasmid stability by a phenomenon denoted as 'addiction', and subsequently in bacterial chromosomes. To discover novel families of antitoxins and toxins, we developed a bioinformatics approach based on the 'guilt by association' principle. Extensive experimental validation in Escherichia coli of predicted antitoxins and toxins increased significantly the number of validated systems and defined novel toxin and antitoxin families. Our data suggest that toxin families as well as antitoxin families originate from distinct ancestors that were assembled multiple times during evolution. Toxin and antitoxin families found on plasmids tend to be promiscuous and widespread, indicating that TA systems move through horizontal gene transfer. We propose that due to their addictive properties, TA systems are likely to be maintained in chromosomes even though they do not necessarily confer an advantage to their bacterial hosts. Therefore, addiction might play a major role in the evolutionary success of TA systems both on mobile genetic elements and in bacterial chromosomes.


Assuntos
Toxinas Bacterianas/classificação , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Evolução Molecular , Variação Genética , Genoma Bacteriano , Genômica
18.
PLoS Genet ; 5(3): e1000401, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19266019

RESUMO

Rotifers of Class Bdelloidea are remarkable in having evolved for millions of years, apparently without males and meiosis. In addition, they are unusually resistant to desiccation and ionizing radiation and are able to repair hundreds of radiation-induced DNA double-strand breaks per genome with little effect on viability or reproduction. Because specific histone H2A variants are involved in DSB repair and certain meiotic processes in other eukaryotes, we investigated the histone H2A genes and proteins of two bdelloid species. Genomic libraries were built and probed to identify histone H2A genes in Adineta vaga and Philodina roseola, species representing two different bdelloid families. The expressed H2A proteins were visualized on SDS-PAGE gels and identified by tandem mass spectrometry. We find that neither the core histone H2A, present in nearly all other eukaryotes, nor the H2AX variant, a ubiquitous component of the eukaryotic DSB repair machinery, are present in bdelloid rotifers. Instead, they are replaced by unusual histone H2A variants of higher mass. In contrast, a species of rotifer belonging to the facultatively sexual, desiccation- and radiation-intolerant sister class of bdelloid rotifers, the monogononts, contains a canonical core histone H2A and appears to lack the bdelloid H2A variant genes. Applying phylogenetic tools, we demonstrate that the bdelloid-specific H2A variants arose as distinct lineages from canonical H2A separate from those leading to the H2AX and H2AZ variants. The replacement of core H2A and H2AX in bdelloid rotifers by previously uncharacterized H2A variants with extended carboxy-terminal tails is further evidence for evolutionary diversity within this class of histone H2A genes and may represent adaptation to unusual features specific to bdelloid rotifers.


Assuntos
Proteínas de Helminto/genética , Histonas/genética , Filogenia , Rotíferos/classificação , Rotíferos/genética , Sequência de Aminoácidos , Animais , Quebras de DNA de Cadeia Dupla , Evolução Molecular , Variação Genética , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Histonas/química , Histonas/metabolismo , Dados de Sequência Molecular , Rotíferos/química , Rotíferos/metabolismo , Alinhamento de Sequência
19.
Virus Evol ; 8(2): veac097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533149

RESUMO

Type II DNA topoisomerases of the family A (Topo IIAs) are present in all Bacteria (DNA gyrase) and eukaryotes. In eukaryotes, they play a major role in transcription, DNA replication, chromosome segregation, and modulation of chromosome architecture. The origin of eukaryotic Topo IIA remains mysterious since they are very divergent from their bacterial homologs and have no orthologs in Archaea. Interestingly, eukaryotic Topo IIAs have close homologs in viruses of the phylum Nucleocytoviricota, an expansive assemblage of large and giant viruses formerly known as the nucleocytoplasmic large DNA viruses. Topo IIAs are also encoded by some bacterioviruses of the class Caudoviricetes (tailed bacteriophages). To elucidate the origin of the eukaryotic Topo IIA, we performed in-depth phylogenetic analyses on a dataset combining viral and cellular Topo IIA homologs. Topo IIAs encoded by Bacteria and eukaryotes form two monophyletic groups nested within Topo IIA encoded by Caudoviricetes and Nucleocytoviricota, respectively. Importantly, Nucleocytoviricota remained well separated from eukaryotes after removing both Bacteria and Caudoviricetes from the data set, indicating that the separation of Nucleocytoviricota and eukaryotes is probably not due to long-branch attraction artifact. The topologies of our trees suggest that the eukaryotic Topo IIA was probably acquired from an ancestral member of the Nucleocytoviricota of the class Megaviricetes, before the emergence of the last eukaryotic common ancestor (LECA). This result further highlights a key role of these viruses in eukaryogenesis and suggests that early proto-eukaryotes used a Topo IIB instead of a Topo IIA for solving their DNA topological problems.

20.
Microbiol Spectr ; 10(4): e0114522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863020

RESUMO

Yersinia pseudotuberculosis is an enteric pathogen causing mild enteritis that can lead to mesenteric adenitis in children and septicemia in elderly patients. Most cases are sporadic, but outbreaks have already been described in different countries. We report for the first time a Y. pseudotuberculosis clonal outbreak in France, that occurred in 2020. An epidemiological investigation based on food queries pointed toward the consumption of tomatoes as the suspected source of infection. The Yersinia National Reference Laboratory (YNRL) developed a new cgMLST scheme with 1,921 genes specific to Y. pseudotuberculosis that identified the clustering of isolates associated with the outbreak and allowed to perform molecular typing in real time. In addition, this method allowed to retrospectively identify isolates belonging to this cluster from earlier in 2020. This method, which does not require specific bioinformatic skills, is now used systematically at the YNRL and proves to display an excellent discriminatory power and is available to the scientific community. IMPORTANCE We describe in here a novel core-genome MLST method that allowed to identify in real time, and for the first time in France, a Y. pseudotuberculosis clonal outbreak that took place during the summer 2020 in Corsica. Our method allows to support epidemiological and microbiological investigations to establish a link between patients infected with closely associated Y. pseudotuberculosis isolates, and to identify the potential source of infection. In addition, we made this method available for the scientific community.


Assuntos
Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Idoso , Criança , Surtos de Doenças , Humanos , Tipagem de Sequências Multilocus/métodos , Estudos Retrospectivos , Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/epidemiologia , Infecções por Yersinia pseudotuberculosis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA