Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; : e202400427, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943628

RESUMO

While foldamers have been extensively studied as protein mimics and especially as α-helix mimics, their use as capping motif to enhance α-helix propensity remains comparatively much limited. In this study, we leverage the structural similarities between urea-based helical foldamers and α-helix to investigate the efficacy of oligoureas as N- or C-caps for reinforcing α-helical structures in water. Short oligoureas, comprising 3 to 4 residues, were strategically introduced at the N- or C-terminus of two peptide sequences (S-peptide and an Ala-rich model sequence). The impact of these foldamer insertions on peptide conformation was examined using electronic circular dichroism (ECD) and solution NMR. This research identifies specific foldamer sequences capable of promoting a-helicity when incorporated at either terminus of the peptides. Not only does this work broaden the application scope of foldamers, but it also provides valuable insights into novel strategies for modulating peptide conformation in aqueous environments. The findings presented in this study may have implications for peptide design and the development of bioactive foldamer-based peptide mimics.

2.
Org Biomol Chem ; 22(4): 731-734, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169016

RESUMO

Here we report a series of crystal structures (and accompanying biophysical data) of an array of diverse detergent guests bound to an oligourea foldamer helix bundle. These results significantly increase our structural and chemical understanding of aqueous guest recognition by oligourea foldamers and will aid the design of further functionalised oligourea-based self-assemblies.

3.
Chembiochem ; 24(8): e202300093, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36942862

RESUMO

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition was postponed twice for the reasons that we know. This has given us the opportunity to invite additional speakers of great standing. This year, Institut Curie hosted around 300 participants, including 220 on site and over 80 online. The pandemic has had, at least, the virtue of promoting online meetings, which we came to realize is not perfect but has its own merits. In particular, it enables those with restricted time and resources to take part in events and meetings, which can now accommodate unlimited participants. We apologize to all those who could not attend in person this time due to space limitation at Institut Curie.


Assuntos
Biologia , Humanos , Paris
4.
Chemistry ; 29(39): e202301615, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37436110

RESUMO

Invited for the cover of this issue is the group of Gilles Guichard at the University of Bordeaux. The image depicts sketches and technical drawing tools to illustrate the creation and precise characterization of foldamer tertiary structures. Read the full text of the article at 10.1002/chem.202300087.

5.
Chemistry ; 29(39): e202300087, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-36943398

RESUMO

Oligomers designed to form a helix-turn-helix super-secondary structure have been prepared by covalently bridging aliphatic oligourea foldamer helices with either rigid aromatic or more flexible aliphatic spacers. The relative helix orientation in these dimers was investigated at high resolution using X-ray diffraction analysis. In several cases, racemic crystallography was used to facilitate crystallization and structure determination. All structures were solved by direct methods. Well-defined parallel helical hairpin motifs were observed in all cases when 4,4'-methylene diphenyl diisocyanate was employed as a dimerizing agent, irrespective of primary sequence and chain length.

6.
J Am Chem Soc ; 144(35): 15988-15998, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998571

RESUMO

Amphipathic water-soluble helices formed from synthetic peptides or foldamers are promising building blocks for the creation of self-assembled architectures with non-natural shapes and functions. While rationally designed artificial quaternary structures such as helix bundles have been shown to contain preformed cavities suitable for guest binding, there are no examples of adaptive binding of guest molecules by such assemblies in aqueous conditions. We have previously reported a foldamer 6-helix bundle that contains an internal nonpolar cavity able to bind primary alcohols as guest molecules. Here, we show that this 6-helix bundle can also interact with larger, more complex guests such as n-alkyl glycosides. X-ray diffraction analysis of co-crystals using a diverse set of guests together with solution and gas-phase studies reveals an adaptive binding mode whereby the apo form of the 6-helix bundle undergoes substantial conformational change to accommodate the hydrocarbon chain in a manner reminiscent of glycolipid transfer proteins in which the cavity forms upon lipid uptake. The dynamic nature of the self-assembling and molecular recognition processes reported here marks a step forward in the design of functional proteomimetic molecular assemblies.


Assuntos
Glicolipídeos , Água , Glicosídeos , Peptídeos/química , Proteínas
7.
J Org Chem ; 87(16): 10726-10735, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35917494

RESUMO

Peptides and foldamers have recently gained increasing attention as chiral catalysts to achieve challenging (asymmetric) transformations. We previously reported that short helically folded aliphatic oligoureas in combination with achiral Brønsted bases are effective H-bonding catalysts for C-C bond-forming reactions─i.e., the conjugate addition of 1,3-dicarbonyl pronucleophiles to nitroalkenes─with high reactivity and selectivity and at remarkably low chiral catalyst/substrate molar ratios. This theoretical investigation at the density functional theory level of theory, aims to both analyze how the substrates of the reaction interact with the foldamer catalyst and rationalize a chain-length dependence effect on the catalytic properties. We confirm that the first two ureas are the only H-bond donors available to interact with external molecules. Moreover, each urea site interacts with one of the two reactants allowing a short distance between the two reacting carbons, thus facilitating the conjugated addition. Additionally, it was observed that the molecular recognition and catalyst-substrate interactions are mainly governed by electrostatic interactions but not orbital interactions (see from NBO if this is finally true). On these grounds, an electrostatic potential (ESP) analysis showed an important internal charge separation in the catalyst, the positive ESP region being concentrated around the first two ureas, with its area extending as the number of residues increases.


Assuntos
Peptídeos , Ureia , Catálise , Peptídeos/química , Ureia/química
8.
Macromol Rapid Commun ; 43(20): e2200395, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868609

RESUMO

Sequential block copolymerization involving comonomers belonging to different classes, e.g., a vinyl-type monomer and a heterocycle, is a challenging task in macromolecular chemistry, as corresponding propagating species do not interconvert easily from one to the other by crossover reactions. Here, it is first evidenced that 1-methoxy 2-methyl 1-trimethylsilyloxypropene (MTS), i.e., a silyl ketene acetal (SKA)-containing initiator, can be used in presence of the P4 -t-Bu phosphazene organic base to control the ring-opening polymerization (ROP) of racemic lactide (rac-LA). The elementary reaction, which rapidly transforms SKA groups into propagating alkoxides, can be leveraged to directly synthesize well-defined poly(methyl methacrylate)-b-polylactide block copolymers. This is achieved using P4 -t-Bu as the single organic catalyst and MTS as the initiator for the group transfer polymerization of methyl methacrylate, followed by the ROP of rac-LA. Both polymerization methods are implemented under selective and controlled/living conditions at room temperature in THF. This sequential addition strategy further expands the scope of organic catalysis of polymerizations for macromolecular engineering of block copolymers involving propagating species of disparate reactivity.


Assuntos
Acetais , Polimetil Metacrilato , Polimerização , Metilmetacrilato , Polímeros/química , Metacrilatos
9.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268850

RESUMO

There is an urgent need to develop new therapeutic strategies to fight the emergence of multidrug resistant bacteria. Many antimicrobial peptides (AMPs) have been identified and characterized, but clinical translation has been limited partly due to their structural instability and degradability in physiological environments. The use of unnatural backbones leading to foldamers can generate peptidomimetics with improved properties and conformational stability. We recently reported the successful design of urea-based eukaryotic cell-penetrating foldamers (CPFs). Since cell-penetrating peptides and AMPs generally share many common features, we prepared new sequences derived from CPFs by varying the distribution of histidine- and arginine-type residues at the surface of the oligourea helix, and evaluated their activity on both Gram-positive and Gram-negative bacteria as well as on fungi. In addition, we prepared and tested new amphiphilic block cofoldamers consisting of an oligourea and a peptide segment whereby polar and charged residues are located in the peptide segment and more hydrophobic residues in the oligourea segment. Several foldamer sequences were found to display potent antibacterial activities even in the presence of 50% serum. Importantly, we show that these urea-based foldamers also possess promising antifungal properties.


Assuntos
Antifúngicos
10.
Angew Chem Int Ed Engl ; 60(5): 2296-2303, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32935897

RESUMO

Efficient optimization of a peptide lead into a drug candidate frequently needs further transformation to augment properties such as bioavailability. Among the different options, foldamers, which are sequence-based oligomers with precise folded conformation, have emerged as a promising technology. We introduce oligourea foldamers to reduce the peptide character of inhibitors of protein-protein interactions (PPI). However, the precise design of such mimics is currently limited by the lack of structural information on how these foldamers adapt to protein surfaces. We report a collection of X-ray structures of peptide-oligourea hybrids in complex with ubiquitin ligase MDM2 and vitamin D receptor and show how such hybrid oligomers can be designed to bind with high affinity to protein targets. This work should enable the generation of more effective foldamer-based disruptors of PPIs in the context of peptide lead optimization.


Assuntos
Conformação Proteica em alfa-Hélice/fisiologia , Ureia/química , Humanos , Modelos Moleculares , Estrutura Molecular
11.
J Am Chem Soc ; 141(6): 2516-2525, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30715863

RESUMO

A number of foldamer backbones have been described as useful mimics of protein secondary structure elements, enabling for example the design of synthetic oligomers with the ability to engage specific protein surfaces. Synthetic folded backbones can also be used to create artificial proteins in which a folded peptide segment (e.g., an α-helix, a loop) is replaced by its unnatural counterpart, with the expectation that the resulting molecule would maintain its ability to fold while manifesting new exploitable features. The similarities in screw sense, pitch, and polarity between peptide α-helices and oligourea 2.5-helices suggest that a tertiary structure could be retained when swapping the two backbones in a protein sequence. In the present work, we move a step toward the creation of such composite proteins by replacing the 10-residue long original α-helical segment in the Cys2His2 zinc finger 3 of transcription factor Egr1 (also known as Zif268) by an oligourea sequence bearing two appropriately spaced imidazole side chains for zinc coordination. We show by spectroscopic techniques and mass spectrometry analysis under native conditions that the ability of the peptide/oligourea hybrid to coordinate the zinc ion is not affected by the foldamer replacement. Moreover, detailed NMR analysis provides evidence that the engineered zinc finger motif adopts a folded structure in which the native ß-sheet arrangement of the peptide region and global arrangement of DNA-binding side chains are preserved. Titration in the presence of the Egr1 target DNA sequence supports binding to GC bases as reported for the wild-type zinc finger.


Assuntos
Desenho de Fármacos , Proteína 1 de Resposta de Crescimento Precoce/química , Dedos de Zinco , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos
12.
Bioconjug Chem ; 30(4): 1133-1139, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30860823

RESUMO

Sequence specific molecules with high folding ability (i.e., foldamers) can be used to precisely control the distribution and projection of side chains in space and have recently been introduced as tailored systems for delivering nucleic acids into cells. Designed oligourea sequences with an amphipathic distribution of Arg- and His-type residues were shown to form tight complexes with plasmid DNA, and to effectively promote the release of DNA from the endosomes. Herein, we report the synthesis of new cell-penetrating foldamer sequences in which the foldamer segment is conjugated via a reducible disulfide bond to a ligand that binds cell-surface expressed nucleoproteins with the idea that this system could facilitate both assemblies with nucleic acids and cell entry. This new system was evaluated for delivery of DNA in several cell lines and was found to compare favorably with all comparators tested (DOTAP and b-PEI as well as a number of known cell penetrating peptides) in various cell lines and particularly in culture medium containing up to 50% of serum. These results suggest that this dual molecular platform which is long lasting and noncytotoxic could be of practical use for in vivo applications.


Assuntos
Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Soro , Linhagem Celular , Meios de Cultura , DNA/química , Humanos , Plasmídeos , Dobramento de Proteína , Transfecção
13.
J Org Chem ; 83(5): 2530-2541, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29381363

RESUMO

The synthesis of hybrid urea-based foldamers containing isosteric guanidinium linkages at selected positions in the sequence is described. We used a postelongation approach whereby the guanidinium moiety is introduced by direct transformation of a parent oligo(urea/thiourea) foldamer precursor. The method involves activation of the thiourea by treatment with methyl iodide and subsequent reaction with amines. To avoid undesired cyclization with the preceding urea moiety, resulting in heterocyclic guanidinium formation in the main chain, the urea unit preceding the thiourea unit in the sequence was replaced by an isoatomic and isostructural γ-amino acid. The approach was extended to solid-phase techniques to accelerate the synthesis of longer and more functionalized sequences. Under optimized conditions, an octamer hybrid oligomer incorporating a central guanidinium linkage was obtained in good overall yield and purity. This work also reports data related to the structural consequences of urea by guanidinium replacements in solution and reveals that helical folding is substantially reduced in oligomers containing a guanidinium group.

14.
J Am Chem Soc ; 139(36): 12524-12532, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28783369

RESUMO

Substantial progress has been made toward the development of metal-free catalysts of enantioselective transformations, yet the discovery of organic catalysts effective at low catalyst loadings remains a major challenge. Here we report a novel synergistic catalyst combination system consisting of a peptide-inspired chiral helical (thio)urea oligomer and a simple tertiary amine that is able to promote the Michael reaction between enolizable carbonyl compounds and nitroolefins with excellent enantioselectivities at exceptionally low (1/10 000) chiral catalyst/substrate molar ratios. In addition to high selectivity, which correlates strongly with helix folding, the system we report here is also highly amenable to optimization, as each of its components can be fine-tuned separately to increase reaction rates and/or selectivities. The predictability of the foldamer secondary structure coupled to the high level of control over the primary sequence results in a system with significant potential for future catalyst design.

15.
J Am Chem Soc ; 139(17): 6128-6137, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28234005

RESUMO

Artificial synthetic molecules able to adopt well-defined stable secondary structures comparable to those found in nature ("foldamers") have considerable potential for use in a range of applications such as biomaterials, biorecognition, nanomachines and as therapeutic agents. The development of foldamers with the ability to bind and encapsulate "guest" molecules is of particular interest; as such an ability is a key step toward the development of artificial sensors, receptors and drug-delivery vectors. Although significant progress has been reported within this context, foldamer capsules reported thus far are largely restricted to organic solvent systems, and it is likely that the move to aqueous conditions will prove challenging. Toward this end, we report here structural studies into the ability of a recently reported water-soluble self-assembled foldamer helix bundle to encapsulate simple guest molecules within an internal cavity. Seven high-resolution aqueous crystal structures are reported, accompanied by molecular dynamics and high-field NMR solution data, showing for the first time that encapsulation of guests by a complex self-assembled foldamer in aqueous conditions is possible. The findings also provide ample insight for the future functional development of this system.

16.
Nat Prod Rep ; 34(7): 702-711, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28537612

RESUMO

Covering: up to 2017The innate immune system employs a broad array of antimicrobial peptides (AMPs) to attack invading microorganisms. While most AMPs act by permeabilizing the bacterial membrane, specific subclasses of AMPs have been identified that pass through membranes and inhibit bacterial growth by targeting fundamental intracellular processes. One such subclass is the proline-rich antimicrobial peptides (PrAMPs) that bind to the ribosome and interfere with the process of protein synthesis. A diverse range of PrAMPs have been identified in insects, such as bees, wasps and beetles, and crustaceans, such as crabs, as well as in mammals, such as cows, sheep, goats and pigs. Mechanistically, the best-characterized PrAMPs are the insect oncocins, such as Onc112, and bovine bactenecins, such as Bac7. Biochemical and structural studies have revealed that these PrAMPs bind within the ribosomal exit tunnel with a reverse orientation compared to a nascent polypeptide chain. The PrAMPs allow initiation but prevent the transition into the elongation phase of translation. Insight into the interactions of PrAMPs with their ribosomal target provides the opportunity to further develop these peptides as novel antimicrobial agents.


Assuntos
Antibacterianos/síntese química , Anti-Infecciosos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Prolina/química , Animais , Antibacterianos/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Bovinos , Besouros , Feminino , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Ovinos , Suínos , Vespas
17.
Bioorg Med Chem ; 25(16): 4245-4252, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687228

RESUMO

Membrane-active foldamers have recently emerged as potential mimics of antimicrobial peptides (AMPs). Amphiphilic cationic helical N,N'-linked oligoureas are one such class of AMP mimics with activities in vitro against a broad range of bacteria including Bacillus anthracis, a Gram-positive sporulating bacillus and causing agent of anthrax. Here we have used site-selective chemical modifications of the oligourea backbone to gain additional insight into the relationship between structure and function and modulate anthracidal activity. A series of analogues in which urea linkages at selected positions are replaced by thiourea and guanidium surrogates have been prepared on solid support and tested against different bacterial forms of B. anthracis (germinated spores and encapsulated bacilli). Urea→thiourea and urea→guanidinium replacements close to the negative end of the helix dipole led to analogues with increased potency and selectivity for B. anthracis versus mammalian cells.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Guanidina/farmacologia , Tioureia/farmacologia , Ureia/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Guanidina/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade , Tioureia/química , Ureia/análogos & derivados , Ureia/química
18.
J Am Chem Soc ; 138(33): 10522-30, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27434817

RESUMO

Non-natural synthetic oligomers that adopt well-defined secondary structures (i.e., foldamers) represent appealing components for the fabrication of bioinspired self-assembled architectures at the nanometer scale. Recently, peptidomimetic N,N'-linked oligourea helices have been designed de novo with the ability to fold into discrete helix bundles in aqueous conditions. In order to gain better insight into the determinants of oligourea helix bundle formation, we have investigated the sequence-to-structure relationship of an 11-mer oligourea previously shown to assemble into a six-helix bundle. Using circular dichroism, NMR spectroscopy, native mass-spectrometry and X-ray crystallography, we studied how bundle formation was affected by systematic replacement of the hydrophobic surface of the oligourea helix with either polar or different hydrophobic side chains. The molecular information gathered here has revealed several key requirements for foldamer bundle formation in aqueous conditions, and provides valuable insight toward the development of foldamer quaternary assemblies with improved (bio)physical properties and divergent topologies.

19.
Bioconjug Chem ; 27(8): 1942-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27459208

RESUMO

The current interest for platinum N-heterocyclic carbene complexes in cancer research stems from their impressive toxicity reported against a range of different human cancer cells. To date, the demonstration of their in vivo efficacy relative to that of established platinum-based drugs has not been specifically addressed. Here, we introduce an innovative approach to increase the NHC-Pt complex potency whereby multiple NHC-Pt(II) complexes are coordinated along a polyethylenimine polymer (PEI) chain. We show that such NHC-Pt(II)-PEI conjugates induce human cancer cell death in vitro and in vivo in a xenograft mouse model with no observable side effects in contrast to oxaliplatin. Additional studies indicate nucleus and mitochondria targeting and suggest various mechanisms of action compared to classical platinum-based anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Polietilenoimina/química , Animais , Antineoplásicos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organoplatínicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Chemistry ; 22(44): 15684-15692, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27539912

RESUMO

Anion binding properties of neutral helical foldamers consisting of urea type units in their backbone have been investigated. 1 H NMR titration studies in various organic solvents including DMSO suggest that the interaction between aliphatic oligoureas and anions (CH3 COO- , H2 PO4- , Cl- ) is site-specific, as it largely involves the urea NHs located at the terminal end of the helix (positive pole of the helix), which do not participate to the helical intramolecular hydrogen-bonding network. This mode of binding parallels that found in proteins in which anion-binding sites are frequently found at the N-terminus of an α-helix. 1 H NMR studies suggest that the helix of oligoureas remains largely folded upon anion binding, even in the presence of a large excess of the anion. This study points to potentially useful applications of oligourea helices for the selective recognition of small guest molecules.


Assuntos
Ânions/química , Dióxido de Carbono/química , Peptídeos/química , Solventes/química , Ureia/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA