Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Therm Biol ; 53: 135-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26590466

RESUMO

Demographic responses and fatty acid profiles of Moina macrocopa were quantified under different temperature regimes (20°C, 25°C and 30°C and diurnally variable 20-30°C) and at fixed ration (10.65µgDWml(-1)) of Chlorella. Highest constant temperature (30°C) reduced the density of M. macrocopa. The cladocerans under the fluctuating temperature regime too had lower population growth (about 50% lower than that at constant 25°C). The survivorship of M. macrocopa was higher at 20°C than that at 25°C and 30°C or at variable temperature regime. Gross and net reproductive rates were higher at 25°C. At 20°C, neonates had the highest proportion (67%) of myristic, palmitic and stearic acids while the adults had the lowest (26%) proportion. For both adults and neonates, palmitoleic, linoleic and linolenic comprised of 15-35% of the total fatty acids. Higher percentage (19%) of linoleic acid was present in adults than neonates (7%). Adults had linolenic acid level which was 3-times higher than in neonates. Linoleic and linolenic fatty acids decreased with increasing temperature for neonates and adults from 20°C to 30°C. The demographic responses and fatty acid profiles of M. macrocopa were discussed in relation to level and mode of temperature exposure.


Assuntos
Cladocera/fisiologia , Ácidos Graxos/metabolismo , Temperatura , Aclimatação , Animais , Cladocera/crescimento & desenvolvimento
2.
Environ Sci Technol ; 46(9): 5077-84, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22486655

RESUMO

The effect of simultaneously removing algal blooms from water and reducing the resuspension and nutrient release from the sediment was studied using modified local soil/sand flocculation-capping (MLS-capping) in simulated water-sediment systems. Twenty one sediment cores in situ with overlying water containing algal blooms were collected from Meiliang Bay of Lake Taihu (China) in July 2011. The algal cells in the water were flocculated and sunk to the sediment using chitosan modified local soils, and the algal flocs were capped with modified and nonmodified soil/sand and then incubated at 25 °C for 20 days. In the MLS-capping treated systems, the TP concentration was reduced from 2.56 mg P L(-1) to 0.06-0.14 mg P L(-1) and TN from 14.66 mg N L(-1) to 6.03-9.56 mg N L(-1) throughout the experiment, whereas the sediment to water fluxes of TP, TN, PO(4)-P, and NH(4)-N were greatly reduced or reversed and the redox potential remarkably increased compared to the control system. A capping layer of 1 cm chitosan-modified sand decreased the resuspension of the sediment by a factor of 5 compared to the clay/soil/sediment systems and the overlying water kept clear even under constant stirring conditions (200 rpm). The study suggested that by using MLS-capping technology it is possible to quickly reduce the nutrient and turbidity of water by flocculating and capping the algal cells into the sediment, where the resuspension of algal flocs is physically reduced and the diffusion of nutrients from sediment to the overlying water chemically blocked by the MLS capping layers.


Assuntos
Recuperação e Remediação Ambiental , Eutrofização , Proliferação Nociva de Algas , Lagos/química , Floculação , Sedimentos Geológicos/análise , Nitrogênio/análise , Oxirredução , Fósforo/análise , Dióxido de Silício , Solo
3.
Environ Sci Pollut Res Int ; 22(6): 4418-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25304240

RESUMO

Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.


Assuntos
Lagos/química , Lagos/microbiologia , Luz , Nitrogênio/farmacologia , Fósforo/farmacologia , Fitoplâncton/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento , Análise de Variância , Biomassa , Clorofila/metabolismo , Clorofila A , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/efeitos dos fármacos , Alga Marinha/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA