Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683993

RESUMO

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genética
2.
J Biol Chem ; 291(6): 2799-811, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26644477

RESUMO

Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouse(TM) platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease.


Assuntos
Anticorpos Monoclonais , Doenças Cardiovasculares , HDL-Colesterol , Dislipidemias , Fosfatidilcolina-Esterol O-Aciltransferase , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Complexo Antígeno-Anticorpo/sangue , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Sítios de Ligação de Anticorpos , Células CHO , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , HDL-Colesterol/sangue , HDL-Colesterol/imunologia , Cricetinae , Cricetulus , Dislipidemias/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/imunologia , Humanos , Macaca fascicularis , Camundongos , Fosfatidilcolina-Esterol O-Aciltransferase/antagonistas & inibidores , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/imunologia , Estrutura Quaternária de Proteína
3.
J Lipid Res ; 56(9): 1711-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26195816

RESUMO

LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/ß hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity.


Assuntos
Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/química , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Colesterol/genética , Cristalografia por Raios X , Humanos , Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais
4.
Nat Protoc ; 19(2): 565-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087082

RESUMO

To produce abundant cell culture samples to generate large, standardized image datasets of human induced pluripotent stem (hiPS) cells, we developed an automated workflow on a Hamilton STAR liquid handler system. This was developed specifically for culturing hiPS cell lines expressing fluorescently tagged proteins, which we have used to study the principles by which cells establish and maintain robust dynamic localization of cellular structures. This protocol includes all details for the maintenance, passage and seeding of cells, as well as Matrigel coating of 6-well plastic plates and 96-well optical-grade, glass plates. We also developed an automated image-based hiPS cell colony segmentation and feature extraction pipeline to streamline the process of predicting cell count and selecting wells with consistent morphology for high-resolution three-dimensional (3D) microscopy. The imaging samples produced with this protocol have been used to study the integrated intracellular organization and cell-to-cell variability of hiPS cells to train and develop deep learning-based label-free predictions from transmitted-light microscopy images and to develop deep learning-based generative models of single-cell organization. This protocol requires some experience with robotic equipment. However, we provide details and source code to facilitate implementation by biologists less experienced with robotics. The protocol is completed in less than 10 h with minimal human interaction. Overall, automation of our cell culture procedures increased our imaging samples' standardization, reproducibility, scalability and consistency. It also reduced the need for stringent culturist training and eliminated culturist-to-culturist variability, both of which were previous pain points of our original manual pipeline workflow.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microscopia , Reprodutibilidade dos Testes , Técnicas de Cultura de Células/métodos , Automação
5.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38895282

RESUMO

Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFß. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.

6.
Proc Natl Acad Sci U S A ; 107(8): 3698-703, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133671

RESUMO

Gene expression signatures are used in the clinic as prognostic tools to determine the risk of individual patients with localized breast tumors developing distant metastasis. We lack a clear understanding, however, of whether these correlative biomarkers link to a common biological network that regulates metastasis. We find that the c-MYC oncoprotein coordinately regulates the expression of 13 different "poor-outcome" cancer signatures. In addition, functional inactivation of MYC in human breast cancer cells specifically inhibits distant metastasis in vivo and invasive behavior in vitro of these cells. These results suggest that MYC oncogene activity (as marked by "poor-prognosis" signature expression) may be necessary for the translocation of poor-outcome human breast tumors to distant sites.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias da Mama/genética , Movimento Celular/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico
7.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333118

RESUMO

Rationale: Over 200 mutations in the sarcomeric protein ß-myosin heavy chain (MYH7) have been linked to hypertrophic cardiomyopathy (HCM). However, different mutations in MYH7 lead to variable penetrance and clinical severity, and alter myosin function to varying degrees, making it difficult to determine genotype-phenotype relationships, especially when caused by rare gene variants such as the G256E mutation. Objective: This study aims to determine the effects of low penetrant MYH7 G256E mutation on myosin function. We hypothesize that the G256E mutation would alter myosin function, precipitating compensatory responses in cellular functions. Methods: We developed a collaborative pipeline to characterize myosin function at multiple scales (protein to myofibril to cell to tissue). We also used our previously published data on other mutations to compare the degree to which myosin function was altered. Results: At the protein level, the G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 50.9%, suggesting more myosins available for contraction. Myofibrils isolated from hiPSC-CMs CRISPR-edited with G256E (MYH7 WT/G256E ) generated greater tension, had faster tension development and slower early phase relaxation, suggesting altered myosin-actin crossbridge cycling kinetics. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. Single-cell transcriptomic and metabolic profiling demonstrated upregulation of mitochondrial genes and increased mitochondrial respiration, suggesting altered bioenergetics as an early feature of HCM. Conclusions: MYH7 G256E mutation causes structural instability in the transducer region, leading to hypercontractility across scales, perhaps from increased myosin recruitment and altered crossbridge cycling. Hypercontractile function of the mutant myosin was accompanied by increased mitochondrial respiration, while cellular hypertrophy was modest in the physiological stiffness environment. We believe that this multi-scale platform will be useful to elucidate genotype-phenotype relationships underlying other genetic cardiovascular diseases.

8.
Blood ; 114(14): 2984-92, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19654408

RESUMO

Activating mutations in the receptor tyrosine kinase FLT3 are present in up to approximately 30% of acute myeloid leukemia (AML) patients, implicating FLT3 as a driver of the disease and therefore as a target for therapy. We report the characterization of AC220, a second-generation FLT3 inhibitor, and a comparison of AC220 with the first-generation FLT3 inhibitors CEP-701, MLN-518, PKC-412, sorafenib, and sunitinib. AC220 exhibits low nanomolar potency in biochemical and cellular assays and exceptional kinase selectivity, and in animal models is efficacious at doses as low as 1 mg/kg given orally once daily. The data reveal that the combination of excellent potency, selectivity, and pharmacokinetic properties is unique to AC220, which therefore is the first drug candidate with a profile that matches the characteristics desirable for a clinical FLT3 inhibitor.


Assuntos
Benzotiazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Benzenossulfonatos/farmacologia , Benzotiazóis/farmacocinética , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Furanos , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacocinética , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Prognóstico , Mapeamento de Interação de Proteínas , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/farmacologia , Quinazolinas/farmacologia , Sorafenibe , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioorg Med Chem Lett ; 21(18): 5342-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807507

RESUMO

Aryl phenyl ureas with a 4-quinazolinoxy substituent at the meta-position of the phenyl ring are potent inhibitors of mutant and wild type BRAF kinase. Compound 7 (1-(5-tert-butylisoxazol-3-yl)-3-(3-(6,7-dimethoxyquinazolin-4-yloxy)phenyl)urea hydrochloride) exhibits good pharmacokinetic properties in rat and mouse and is efficacious in a mouse tumor xenograft model following oral dosing.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Quinazolinas/farmacologia , Ureia/farmacologia , Animais , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual , Ureia/análogos & derivados , Ureia/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 11(1): 15845, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349150

RESUMO

We performed a comprehensive analysis of the transcriptional changes occurring during human induced pluripotent stem cell (hiPSC) differentiation to cardiomyocytes. Using single cell RNA-seq, we sequenced > 20,000 single cells from 55 independent samples representing two differentiation protocols and multiple hiPSC lines. Samples included experimental replicates ranging from undifferentiated hiPSCs to mixed populations of cells at D90 post-differentiation. Differentiated cell populations clustered by time point, with differential expression analysis revealing markers of cardiomyocyte differentiation and maturation changing from D12 to D90. We next performed a complementary cluster-independent sparse regression analysis to identify and rank genes that best assigned cells to differentiation time points. The two highest ranked genes between D12 and D24 (MYH7 and MYH6) resulted in an accuracy of 0.84, and the three highest ranked genes between D24 and D90 (A2M, H19, IGF2) resulted in an accuracy of 0.94, revealing that low dimensional gene features can identify differentiation or maturation stages in differentiating cardiomyocytes. Expression levels of select genes were validated using RNA FISH. Finally, we interrogated differences in cardiac gene expression resulting from two differentiation protocols, experimental replicates, and three hiPSC lines in the WTC-11 background to identify sources of variation across these experimental variables.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transcriptoma , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , RNA-Seq
11.
Cell Syst ; 12(6): 670-687.e10, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34043964

RESUMO

Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Humanos , Miócitos Cardíacos/metabolismo , Transcriptoma/genética
12.
Stem Cell Reports ; 12(5): 1145-1158, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30956114

RESUMO

We describe a multistep method for endogenous tagging of transcriptionally silent genes in human induced pluripotent stem cells (hiPSCs). A monomeric EGFP (mEGFP) fusion tag and a constitutively expressed mCherry fluorescence selection cassette were delivered in tandem via homology-directed repair to five genes not expressed in hiPSCs but important for cardiomyocyte sarcomere function: TTN, MYL7, MYL2, TNNI1, and ACTN2. CRISPR/Cas9 was used to deliver the selection cassette and subsequently mediate its excision via microhomology-mediated end-joining and non-homologous end-joining. Most excised clones were effectively tagged, and all properly tagged clones expressed the mEGFP fusion protein upon differentiation into cardiomyocytes, allowing live visualization of these cardiac proteins at the sarcomere. This methodology provides a broadly applicable strategy for endogenously tagging transcriptionally silent genes in hiPSCs, potentially enabling their systematic and dynamic study during differentiation and morphogenesis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/genética , Actinina/genética , Actinina/metabolismo , Sequência de Aminoácidos , Diferenciação Celular/genética , Linhagem Celular , Reparo do DNA por Junção de Extremidades/genética , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Sarcômeros/metabolismo , Homologia de Sequência de Aminoácidos , Troponina I/genética , Troponina I/metabolismo
13.
J Vis Exp ; (138)2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-30199041

RESUMO

A protocol is presented for generating human induced pluripotent stem cells (hiPSCs) that express endogenous proteins fused to in-frame N- or C-terminal fluorescent tags. The prokaryotic CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) may be used to introduce large exogenous sequences into genomic loci via homology directed repair (HDR). To achieve the desired knock-in, this protocol employs the ribonucleoprotein (RNP)-based approach where wild type Streptococcus pyogenes Cas9 protein, synthetic 2-part guide RNA (gRNA), and a donor template plasmid are delivered to the cells via electroporation. Putatively edited cells expressing the fluorescently tagged proteins are enriched by fluorescence activated cell sorting (FACS). Clonal lines are then generated and can be analyzed for precise editing outcomes. By introducing the fluorescent tag at the genomic locus of the gene of interest, the resulting subcellular localization and dynamics of the fusion protein can be studied under endogenous regulatory control, a key improvement over conventional overexpression systems. The use of hiPSCs as a model system for gene tagging provides the opportunity to study the tagged proteins in diploid, nontransformed cells. Since hiPSCs can be differentiated into multiple cell types, this approach provides the opportunity to create and study tagged proteins in a variety of isogenic cellular contexts.


Assuntos
Sistemas CRISPR-Cas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Humanos
14.
Mol Biol Cell ; 14(3): 1017-26, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631720

RESUMO

The gamma-tubulin ring complex (gammaTuRC), consisting of multiple protein subunits, can nucleate microtubule assembly. Although many subunits of the gammaTuRC have been identified, a complete set remains to be defined in any organism. In addition, how the subunits interact with each other to assemble into gammaTuRC remains largely unknown. Here, we report the characterization of a novel gammaTuRC subunit, Drosophila gamma ring protein with WD repeats (Dgp71WD). With the exception of gamma-tubulin, Dgp71WD is the only gammaTuRC component identified to date that does not contain the grip motifs, which are signature sequences conserved in gammaTuRC components. By performing immunoprecipitations after pair-wise coexpression in Sf9 cells, we show that Dgp71WD directly interacts with the grip motif-containing gammaTuRC subunits, Dgrips84, 91, 128, and 163, suggesting that Dgp71WD may play a scaffolding role in gammaTuRC organization. We also show that Dgrips128 and 163, like Dgrips84 and 91, can interact directly with gamma-tubulin. Coexpression of any of these grip motif-containing proteins with gamma-tubulin promotes gamma-tubulin binding to guanine nucleotide. In contrast, in the same assay Dgp71WD interacts with gamma-tubulin but does not facilitate nucleotide binding.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Guanosina Trifosfato/metabolismo , Substâncias Macromoleculares , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas/genética , Alinhamento de Sequência , Tubulina (Proteína)/genética
15.
Cancer Res ; 65(24): 11572-80, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16357167

RESUMO

Cell migration and invasion are two critical cellular processes that are often deregulated during tumorigenesis. To identify factors that contribute to oncogenic progression by stimulating cell migration, we conducted a powerful retroviral based migration screen using an MCF7 cDNA library and the immortalized human breast epithelial cell line MCF-10A. We identified prostate derived Ets factor (PDEF), an Ets transcription factor that is overexpressed in both prostate and breast carcinoma, as a candidate promigratory gene from this screen. Whereas PDEF induced limited motility of MCF-10A cells, coexpression of PDEF with the receptor tyrosine kinases (RTK) ErbB2 and colony-stimulating factor receptor (CSF-1R)/CSF-1 significantly enhanced MCF-10A motility. Furthermore, cells coexpressing PDEF with either ErbB2 or CSF-1R/CSF-1 induced a dramatic invasive phenotype in three-dimensional cultures. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway also enhanced PDEF-induced motility and invasion, suggesting that activation of the ERK/mitogen-activated protein kinase by ErbB2 and CSF-1R/CSF-1 can cooperate with PDEF to promote motility and invasion. Furthermore, PDEF promoted anchorage-independent growth of ErbB2 and CSF-1R/CSF-1-expressing cells. Using laser capture microdissection, we also found that PDEF mRNA is overexpressed in breast tumor epithelia throughout tumor progression. Taken together, these findings suggest that the transcription factor PDEF may play an important role in breast tumorigenesis and that PDEF overexpression may be particularly significant in tumors that exhibit activation of oncogenic RTKs such as ErbB2 and CSF-1R.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Células Epiteliais/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lasers , Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Retroviridae/genética , Células Tumorais Cultivadas , Cicatrização
16.
Mol Biol Cell ; 28(21): 2854-2874, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814507

RESUMO

We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1-4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line-generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community.


Assuntos
Imunofluorescência/métodos , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco/fisiologia , Sistemas CRISPR-Cas , Linhagem Celular , Marcação de Genes/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
Mol Cancer Ther ; 12(4): 438-47, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23412931

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML). FLT3-activating internal tandem duplication (ITD) mutations are found in approximately 30% of patients with AML and are associated with poor outcome in this patient population. Quizartinib (AC220) has previously been shown to be a potent and selective FLT3 inhibitor. In the current study, we expand on previous observations by showing that quizartinib potently inhibits the phosphorylation of FLT3 and downstream signaling molecules independent of FLT3 genotype, yet induces loss of viability only in cells expressing constitutively activated FLT3. We further show that transient exposure to quizartinib, whether in vitro or in vivo, leads to prolonged inhibition of FLT3 signaling, induction of apoptosis, and drastic reductions in tumor volume and pharmacodynamic endpoints. In vitro experiments suggest that these prolonged effects are mediated by slow binding kinetics that provide for durable inhibition of the kinase following drug removal/clearance. Together these data suggest quizartinib, with its unique combination of selectivity and potent/sustained inhibition of FLT3, may provide a safe and effective treatment against FLT3-driven leukemia.


Assuntos
Apoptose/efeitos dos fármacos , Benzotiazóis/farmacologia , Leucemia/metabolismo , Compostos de Fenilureia/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Concentração Inibidora 50 , Leucemia/genética , Camundongos , Mutação , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/química , Fosforilação/efeitos dos fármacos , Ligação Proteica , Tirosina Quinase 3 Semelhante a fms/genética
19.
Cancer Cell ; 23(6): 753-67, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23764000

RESUMO

Breast cancer is a heterogeneous disease and can be classified based on gene expression profiles that reflect distinct epithelial subtypes. We identify prostate-derived ETS factor (PDEF) as a mediator of mammary luminal epithelial lineage-specific gene expression and as a factor required for tumorigenesis in a subset of breast cancers. PDEF levels strongly correlate with estrogen receptor (ER)-positive luminal breast cancer, and PDEF transcription is inversely regulated by ER and GATA3. Furthermore, PDEF is essential for luminal breast cancer cell survival and is required in models of endocrine resistance. These results offer insights into the function of this ETS factor that are clinically relevant and may be of therapeutic value for patients with breast cancer treated with endocrine therapy.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-ets/fisiologia , Receptores de Estrogênio/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Epiteliais/metabolismo , Feminino , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/fisiologia , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Humanos , Células MCF-7 , Prognóstico , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores de Estrogênio/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
20.
J Med Chem ; 55(7): 3250-60, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22380736

RESUMO

Serine/threonine protein kinases Aurora A, B, and C play essential roles in cell mitosis and cytokinesis. Currently a number of Aurora kinase inhibitors with different isoform selectivities are being evaluated in the clinic. Herein we report the discovery and characterization of 21c (AC014) and 21i (AC081), two structurally novel, potent, kinome-selective pan-Aurora inhibitors. In the human colon cancer cell line HCT-116, both compounds potently inhibit histone H3 phosphorylation and cell proliferation while inducing 8N polyploidy. Both compounds administered intravenously on intermittent schedules displayed potent and durable antitumor activity in a nude rat HCT-116 tumor xenograft model and exhibited good in vivo tolerability. Taken together, these data support further development of both 21c and 21i as potential therapeutic agents for the treatment of solid tumors and hematological malignancies.


Assuntos
Acetanilidas/síntese química , Antineoplásicos/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Triazinas/síntese química , Acetanilidas/farmacocinética , Acetanilidas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Aurora Quinase A , Aurora Quinases , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histonas/metabolismo , Humanos , Modelos Moleculares , Transplante de Neoplasias , Fosforilação , Ligação Proteica , Ratos , Ratos Nus , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Transplante Heterólogo , Triazinas/farmacocinética , Triazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA