Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Pediatr Allergy Immunol ; 32(8): 1654-1662, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34087025

RESUMO

BACKGROUND: Subcutaneous immunotherapy (SCIT) is an effective, safe, preventative treatment for allergic asthma; however, potential biomarkers for monitoring SCIT have rarely been reported. OBJECTIVE: Metabolomics was utilized for the discovery of new biomarkers and analyzing disease pathophysiology of allergic asthma, and it was also applied to determine the metabolomic profiles of serum samples from children with asthma undergoing SCIT and identify potential biomarkers for allergic asthma and its therapeutic monitoring. METHODS: Untargeted metabolomics using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry was performed on 15 asthmatic and 15 healthy pediatric sera to profile carboxylic acids. Statistical analysis combined with pathway enrichment analysis was applied to identify potential biomarkers. Then, targeted metabolomics was performed to study longitudinal changes of eicosanoid profiles on sera from 20 participants with asthma who received SCIT at baseline, 6 months, one, two, and three years (ChiCTR-DDT-13003728). RESULTS: Metabolomic analysis revealed that levels of eicosanoids, particularly 12(S)-hydroxyeicosatetraenoic acid (HETE; AUC = 0.94, p < .0001) and 15(S)-HETE (AUC = 0.89, p = .0028), metabolized from arachidonic acid by lipoxygenase and glutathione peroxidase enzymes, were significantly higher in asthma group than in healthy individuals. Furthermore, levels of these important metabolites increased in the first year of SCIT treatment and then decreased from years one to three, being significantly lower after three years of treatment than baseline levels. CONCLUSION: 12(S)- and 15(S)-HETEs are potential biomarkers to participate in the pathogenesis and treatment of allergic asthma. Moreover, these metabolites may be a new target for biological indicators to monitor the therapeutic effect of SCIT, particularly in the setting of allergic asthma.


Assuntos
Asma , Ácidos Hidroxieicosatetraenoicos , Asma/tratamento farmacológico , Criança , Dessensibilização Imunológica , Humanos , Ácidos Hidroxieicosatetraenoicos/uso terapêutico , Imunoterapia , Injeções Subcutâneas , Metabolômica
2.
Chem Res Toxicol ; 32(4): 668-680, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30848893

RESUMO

Toosendanin (TSN), a compound from Melia toosendan, exhibits severe hepatotoxicity, which restricts its clinical application. However, the mechanism is not clear. Our previous research found that covalent modification of TSN for proteins might be a possible reason using human liver microsomes, and the glycolytic enzymes, triosephosphate isomerase 1 (TPIS) and α-enolase (ENOA), were responsible for the hepatotoxicity. In this study, we tried to prove these findings in cell and animal models by integration of proteomics, metabolomics, and biological methods. Proteomics analysis in rats showed that TPIS and ENOA were covalently modified by TSN reactive metabolites. The biological functional assessments revealed that the modifications inhibited the activity of TPIS and induced the activity of ENOA, in vitro and in vivo, followed by an increase in the level of cellular methylglyoxal, advanced glycation end products, and reactive oxygen species/superoxide, and the induction of mitochondrial dysfunction, which further inhibited oxidative phosphorylation and stimulated glycolysis. Furthermore, metabolomics demonstrated the decrease in the level of metabolites in the tricarboxylic acid cycle, fatty acid ß-oxidation, and amino acid metabolism; i.e., TSN induced hepatocyte energy metabolism disorder. In conclusion, these data suggest novel mechanistic insights into TSN-induced liver injury on the upstream level and provide valuable proteins and energy metabolic targets for diagnosis and therapy in the clinic.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Metabolômica , Proteômica , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/química , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/metabolismo , Hepatócitos/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Ratos , Ratos Sprague-Dawley
3.
Anal Chem ; 90(19): 11210-11215, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30193063

RESUMO

Carboxyl-containing metabolites (CCMs) widely exist in living systems and are the essential components for life. Global characteristics of CCMs in biological samples are critical for the understanding of physiological processes and the discovery for the onset of relevant diseases. However, their determination represents a challenge due to enormous polarity differences, structural diversity, high structural similarity, and poor ionization efficiency in mass spectrometry. Herein, 5-(diisopropylamino)amylamine (DIAAA) derivatization coupled with liquid chromatography-mass spectrometry (LC-MS) was developed for mapping the CCMs. With this methodology, the sensitivity was significantly enhanced. More importantly, the hydrophobicity of polar CCMs, amino acids, TCA cycle intermediates, and short-chain fatty acids and the hydrophilicity of low-polar CCMs, long-chain fatty acids, and bile acids were significantly increased, resulting in a remarkable separation efficiency for which 68 CCMs can be simultaneously determined. Furthermore, the polarity-tuning effect was confirmed to be induced by the different impacts of aliphatic chains and nitrogen atom in DIAAA, the latter existing as a cation in the acidic mobile phase, using different derivatization reagents. Finally, this derivatization method was utilized to hunt for the potential biomarkers in colorectal cancer (CRC) patients and 52 CCMs, related with several key metabolic pathways, including amino acids metabolism, TCA cycle, fatty acid metabolism, pyruvate metabolism, and gut flora metabolism were identified. This innovative polarity-tuning derivatization-LC-MS approach was proved to be a valuable tool for probing global metabolome with high separation efficiency and sensitivity in various biological samples.


Assuntos
Neoplasias Colorretais/metabolismo , Metabolômica/métodos , Aminas/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas
4.
Phytochem Anal ; 29(4): 365-374, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687660

RESUMO

INTRODUCTION: Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. OBJECTIVE: Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. METHODOLOGY: Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. RESULTS: Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. CONCLUSION: To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control.


Assuntos
Espectrometria de Massas/métodos , Plantas Medicinais/química , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Microfluídica/instrumentação , Extração em Fase Sólida
5.
J Proteome Res ; 16(9): 3470-3475, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28753293

RESUMO

The usage of strong cation exchange (SCX) chromatography in proteomics is limited by its poor resolution and nonspecific hydrophobic interactions with peptides, which lead to peptide overlap across fractions and change of peptide retention, respectively. The application of high concentration of salt (up to 1000 mM) in SCX also restricted its use in online 2D SCX-RP LC. In the present research, we first exploited the chromatographic ability of online 2D SCX-RP LC by combination of acid, salt, and pH gradient, three relatively independent modes of eluting peptides from SCX column. 50% ACN was added to elution buffer for eliminating hydrophobic interactions between SCX matrix and peptides, and the concentration of volatile salt was reduced to 50 mM. Acid/salt/pH gradient showed superior resolution and sensitivity as well as uniform distribution across fractions, consequently leading to significant improvements in peptide and protein identification. 112 191 unique peptides and 7373 proteins were identified by acid/salt/pH fractionation, while 69 870 unique peptides and 4536 proteins were identified by salt elution, that is, 62.5 and 60.6% more proteins and unique peptides, respectively, identified by the former. Fraction overlap was also significantly minimized by acid/salt/pH approach. Furthermore, acid/salt/pH elution showed more identification for acidic peptides and hydrophilic peptides.


Assuntos
Acetonitrilas/química , Cromatografia por Troca Iônica/métodos , Proteoma/análise , Proteômica/métodos , Cloreto de Sódio/química , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteoma/genética , Proteoma/metabolismo , Proteômica/instrumentação , Sensibilidade e Especificidade
6.
Anal Chem ; 89(24): 13167-13175, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29172493

RESUMO

Hepatotoxicity is a leading cause of drug withdrawal from the market; thus, the assessment of potential drug induced liver injury (DILI) in preclinical trials is necessary. More and more research has shown that the covalent modification of drug reactive metabolites (RMs) for cellular proteins is a possible reason for DILI. Unfortunately, so far no appropriate method can be employed to evaluate this kind of DILI due to the low abundance of RM-protein adducts in complex biological samples. In this study, we proposed a mechanism-based strategy to solve this problem using human liver microsomes (HLMs) and online 2D nano-LC-MS analysis. First, RM modification patterns and potential modified AA residues are determined using HLM and model amino acids (AAs) by UHPLC-Q-TOF-MS. Then, a new online 2D-nano-LC-Q-TOF-MS method is established and applied to separate the digested modified microsomal peptides from high abundance peptides followed by identification of RM-modified proteins using Mascot, in which RM modification patterns on specific AA residues are added. Finally, the functions and relationship with hepatotoxicity of the RM-modified proteins are investigated using ingenuity pathway analysis (IPA) to predict the possible DILI. Using this strategy, 21 proteins were found to be modified by RMs of toosendanin, a hepatotoxic drug with complex structure, and some of them have been reported to be associated with hepatotoxicity. This strategy emphasizes the identification of drug RM-modified proteins in complex biological samples, and no pretreatment is required for the drugs. Consequently, it may serve as a valuable method to predict potential DILI, especially for complex compounds.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Microssomos Hepáticos/metabolismo , Nanotecnologia , Proteínas/análise , Cromatografia Líquida , Humanos , Espectrometria de Massas , Proteínas/metabolismo
7.
Molecules ; 20(6): 10553-65, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26060918

RESUMO

Lotus (Nelumbo nucifera) leaves, a traditional Chinese medicinal herb, are rich in flavonoids. In an effort to thoroughly analyze their flavonoid components, macroporous resin chromatography coupled with HPLC-MS/MS was employed to simultaneously enrich and identify flavonoids from lotus leaves. Flavonoids extracted from lotus leaves were selectively enriched in the macroporous resin column, eluted subsequently as fraction II, and successively subjected to analysis with the HPLC-MS/MS and bioactivity assays. Altogether, fourteen flavonoids were identified, four of which were identified from lotus leaves for the first time, including quercetin 3-O-rhamnopyranosyl-(1→2)-glucopyranoside, quercetin 3-O-arabinoside, diosmetin 7-O-hexose, and isorhamnetin 3-O-arabino- pyranosyl-(1→2)-glucopyranoside. Further bioactivity assays revealed that these flavonoids from lotus leaves possess strong antioxidant activity, and demonstrate very good potential to be explored as food supplements or even pharmaceutical products to improve human health.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Nelumbo/química , Extratos Vegetais/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
8.
J Microbiol Immunol Infect ; 57(1): 128-137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951801

RESUMO

BACKGROUND: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) triggered a significant public health challenge. This study explored the prevalence trends and key genetic characteristics of Hv-CRKP in one Shanghai suburbs hospital during 2014-2018. METHODS: During five years, Hv-CRKP strains identified from 2579 CRKP by specific PCR, were subjected to performed short- and long-read sequencing technology; epidemiological characteristics, antimicrobial-resistance genes (ARGs), virulence determinants, detailed plasmid profiles and conjugation efficiency were comprehensively investigated. RESULTS: 155 Hv-CRKP and 31 non-Hv-CRKP strains were sequenced. Hv-CRKP strains exhibited significant resistance to six common antibiotic classes (>92%). ST11 steadily increased and became the most prevalent ST (85.2%), followed by ST15 (8.5%), ST65 (2.6%), ST23 (1.9%), and ST86 (0.6%). ST11-KL64 (65.2%) rapidly increased from 0 in 2014 to 93.9% in 2018. blaKPC-2 was the primary carbapenemase gene (97.4%). Other ARGs switched from aac(3)-IId to aadA2 in aminoglycoside and from sul1 to sul2 in sulfanilamide. The time-dated phylogenetic tree was divided into four independent evolutionary clades. Clade 1 and 3 strains were mostly limited in the ICU, whereas Clade 2 strains were distributed among multiple departments. Compared to ybt14 in ICEKp12 in Clade 1, Clade 3 strains harbored ybt9 in ICEKp3 and blaCTX-M-65. Hv-CRKP infected more wards than non-Hv-CRKP and showed greater transmission capacity. Three plasmids containing crucial carbapenemase genes demonstrated their early transmission across China. CONCLUSION: The Hv-CRKP ST11-KL64 has rapidly replaced ST11-KL47 and emerged as the predominant epidemic subtype in various hospital wards, highlighting the importance of conducting comprehensive early surveillance for Hv-CRKP, especially in respiratory infections.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Filogenia , China/epidemiologia , Antibacterianos/farmacologia , Hospitais , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Infecções por Klebsiella/epidemiologia
10.
Pharmaceutics ; 15(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840021

RESUMO

The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.

11.
Antioxidants (Basel) ; 11(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453343

RESUMO

Azadirachta indica (A. indica) has been widely used due to its diverse pharmacological activities. However, there are currently few studies on its responsible antioxidant ingredients against superoxide dismutase (SOD) and xanthine oxidase (XOD). In this study, the antioxidant activities of A. indica were evaluated by a 2,2'-azinobis-(3-ethyl-benzthiazoline)-6-sulfonic acid) and ferric-ion-reducing antioxidant power method. Meanwhile, total polyphenol and flavonoid content were determined to reveal that they were the highest in ethyl acetate (EA) fraction. Next, compounds with the most antioxidant activity were screened out from EA fraction by bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS) with SOD and XOD. As a result, gallic acid, protocatechuic acid and (-)-epicatechin were identified as potential SOD ligands with relative binding affinity (RBA) values of 2.15, 1.78 and 1.61, respectively. Additionally, these three ligands could effectively interact with SOD in molecular docking with binding energies (BEs) ranging from -3.84 ± 0.37 to -5.04 ± 0.01 kcal/mol. In addition, carnosic acid exhibited a strong binding affinity to XOD with an RBA value of 2.05 and BE value of -8.24 ± 0.71 kcal/mol. In conclusion, these results indicated that A. indica might have good antioxidant activity and antigout potential, and the UF-LC-MS method is suitable and efficient for screening both SOD and XOD ligands from A. indica.

12.
Antibiotics (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289945

RESUMO

An effective response that combines prevention and treatment is still the most anticipated solution to the increasing incidence of antimicrobial resistance (AMR). As the phenomenon continues to evolve, AMR is driving an escalation of hard-to-treat infections and mortality rates. Over the years, bacteria have devised a variety of survival tactics to outwit the antibiotic's effects, yet given their great adaptability, unexpected mechanisms are still to be discovered. Over-expression of efflux pumps (EPs) constitutes the leading strategy of bacterial resistance, and it is also a primary driver in the establishment of multidrug resistance (MDR). Extensive efforts are being made to develop antibiotic resistance breakers (ARBs) with the ultimate goal of re-sensitizing bacteria to medications to which they have become unresponsive. EP inhibitors (EPIs) appear to be the principal group of ARBs used to impair the efflux system machinery. Due to the high toxicity of synthetic EPIs, there is a growing interest in natural, safe, and innocuous ones, whereby plant extracts emerge to be excellent candidates. Besides EPIs, further alternatives are being explored including the development of nanoparticle carriers, biologics, and phage therapy, among others. What roles do EPs play in the occurrence of MDR? What weapons do we have to thwart EP-mediated resistance? What are the obstacles to their development? These are some of the core questions addressed in the present review.

13.
Front Chem ; 10: 922110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734442

RESUMO

Janus kinases (JAKs) play a key role in subtly regulating proliferation, apoptosis, and differentiation of cancer cells, and their inhibitors are actively sought as new drug leads. By developing JAKs based affinity ultrafiltration method coupled with LC/Q-TOF-MS in order to discover selective JAKs inhibitors from total quaternary alkaloids (QAs) from Zanthoxylum simulans, peak 19 (Berberine) and peak 21 (Chelerythrine) were revealed to exhibit notable selectivity on JAK1, JAK2, and JAK3 over Tyk2. In addition, Chelerythrine showed stronger inhibitory activity than the positive control (Cerdulatinib) on gastric cancer cells (AGS), while Berberine, with weaker inhibition. Chelerythrine and Berberine also showed obvious inhibition on human hepatocyte cells (LO2). Furthermore, molecular docking analysis revealed their discrepancies due to different interaction bonds and characteristic residues. Quaternary N was proposed as the functional group to enhance the selectivity of JAK1, and some specific moieties towards Asp1021, Leu855, and Leu828 were suggested to increase the selectivity for JAK1, JAK2, and JAK3, respectively. As the most potential inhibitor of JAKs from QAs, Chelerythrine exhibited distinct suppression of adhesion, migration, invasion, and stimulating apoptosis of AGS cells, which was consistent with the significant down-regulation of estrogen receptors (ER-α36, ER-α66, and ER-ß1) and Src expression. In conclusion, an efficient screening approach was developed to identify Berberine and Chelerythrine as potential selective candidates from Zanthoxylum simulans with significant anti-proliferative activity against gastric carcinoma. As we know, it was the first report to propose an estrogen signal pathway for Chelerythrine in anti-gastric cancer cells (AGS) study. The results supported Chelerythrine inhibitory effects on AGS by not only direct inhibiting JAKs but also down-regulating the estrogen pathway.

14.
Antioxidants (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439550

RESUMO

Carissa spinarum Linn. has been utilized both in the food industry and as a traditional medicine for various ailments, while the responsible chemical components and action mechanisms of its antioxidative and hepatoprotective activities remain unclear. In this work, at least 17 quinic acid derivatives as potential ligands for the superoxide dismutase (SOD) enzyme from Carissa spinarum L. were screened out using the bio-affinity ultrafiltration with liquid chromatography mass spectrometry (UF-LC/MS), and 12 of them (1-12), including, three new ones (1-3), were further isolated by phytochemical methods and identified by high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and extensive nuclear magnetic resonance (NMR) spectroscopic analysis. All of these isolated compounds were evaluated for their antioxidant activities by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) methods. As a result, compounds 4 and 6-11 displayed similar or better antioxidant activities compared to vitamin C, which is in good agreement with the bio-affinity ultrafiltration with SOD enzyme. Then, these compounds, 4 and 6-11, with better antioxidant activity were further explored to protect the L02 cells from H2O2-induced oxidative injury by reducing the reactive oxygen species (ROS) and Malondialdehyde (MDA) production and activating the SOD enzyme. To the best of our knowledge, this is the first report to use an efficient ultrafiltration approach with SOD for the rapid screening and identification of the SOD ligands directly from a complex crude extract of Carissa spinarum, and to reveal its corresponding active compounds with good antioxidative and hepatoprotective activities.

15.
Antioxidants (Basel) ; 10(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804549

RESUMO

Warburgia ugandensis, also known as "green heart," is widely used for the treatment of various diseases as a traditional ethnomedicinal plant in local communities in Africa. In this work, 9 and 12 potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from W. ugandensis were quickly screened out by combining SOD and XOD affinity ultrafiltration with LC-MS, respectively. In this way, four new lignanamides (compounds 11-14) and one new macrocyclic glycoside (compound 5), along with three known compounds (compounds 1, 3, and 7), were isolated and identified firstly in this species. The structures of the new compounds were elucidated by spectroscopic analysis, including NMR and UPLC-QTOF-MS/MS. Among these compounds, compound 14 showed the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activities, and total ferric-reducing antioxidant power (FRAP) with IC50 values of 6.405 ± 0.362 µM, 5.381 ± 0.092 µM, and 17.488 ± 1.625 mmol TE/g, respectively. Moreover, compound 14 displayed the highest inhibitory activity on cyclooxygenase-2 (COX-2) with IC50 value of 0.123 ± 0.004 µM, and the ranking order of other compounds' IC50 values was 13 > 11 > 7 > 1 > 12. The present study suggested that lignanamides might represent interesting new characteristic functional components of W. ugandensis to exert remarkable antioxidant and anti-inflammatory activities. Moreover, compound 14, a new arylnaphthalene lignanamide, would be a highly potential natural antioxidant and anti-inflammatory agent from W. ugandensis.

16.
Antioxidants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679694

RESUMO

Warburgia ugandensis Sprague (WU) is a traditional medicinal plant used for the treatment of various diseases, including cancer, in Africa. This study aimed to evaluate the anti-non-small cell lung cancer (NSCLC) activities of WU against A549 cells and to reveal potential molecular mechanisms. The cytotoxicity of various WU extracts was evaluated with HeLa (cervical cancer), HepG2 (liver cancer), HT-29 (colorectal cancer), and A549 (non-small cell lung cancer) cells by means of Sulforhodamine B (SRB) assay. Therein, the dimethyl carbonate extract of WU (WUD) was tested with the most potent anti-proliferative activity against the four cancer cell lines, and its effects on cell viability, cell cycle progression, DNA damage, intracellular reactive oxygen species (ROS), and expression levels of G0/G1-related proteins in A549 cells were further examined. First, it was found that WUD inhibited the proliferation of A549 cells in a time- and dose-dependent manner. In addition, WUD induced G0/G1 phase arrest and modulated the expression of G0/G1 phase-associated proteins Cyclin D1, Cyclin E1, and P27 in A549 cells. Furthermore, WUD increased the protein abundance of P27 by inhibiting FOXO3A/SKP2 axis-mediated protein degradation and also significantly induced the γH2AX expression and intracellular ROS generation of A549 cells. It was also found that the inhibitory effect of WUD on the proliferation and G0/G1 cell cycle progression of A549 cells could be attenuated by NAC, a ROS scavenger. On the other hand, phytochemical analysis of WUD with UPLC-QTOF-MS/MS indicated 10 sesquiterpenoid compounds. In conclusion, WUD exhibited remarkable anti-proliferative effects on A549 cells by improving the intracellular ROS level and by subsequently modulating the cell proliferation and G0/G1 cell cycle progression of A549 cells. These findings proved the good therapeutic potential of WU for the treatment of NSCLC.

17.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804242

RESUMO

Ficus glumosa Delile (Moraceae), a reputed plant that is used in herbal medicine, is of high medicinal and nutritional value in local communities primarily ascribed to its phytochemical profile. Currently, there are hardly any fine details on the chemical profiling and pharmacological evaluation of this species. In this study, the flavonoids and phenolics contents of the ethanol extracts and four extracted fractions (petroleum ether (PE), ethyl acetate (EA), n-butanol, and water) of the stem bark of Ficus glumosa were firstly quantified. Further, their antioxidant and antiproliferative potentials were also evaluated. The quantitative determination indicated that the EA and n-butanol fractions possessed the highest total flavonoids/phenolics levels of 274.05 ± 0.68 mg RE/g and 78.87 ± 0.97 mg GAE/g, respectively. Similarly, for the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays, the EA fraction exhibited high potency in both DPPH and ABTS+ scavenging activities with IC50 values of 0.23 ± 0.03 mg/mL, 0.22 ± 0.03 mg/mL, and FRAP potential of 2.81 ± 0.01 mg Fe2+/g, respectively. Furthermore, the EA fraction displayed high cytotoxicity against human lung (A549) and colon (HT-29) cancer cells. Additionally, the liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was employed in order to characterize the chemical constituents of the EA fraction of Ficus glumosa stem bark. Our findings revealed 16 compounds from the EA fraction that were possibly responsible for the strong antioxidant and anti-proliferative properties. This study provides edge-cutting background information on the exploitation of Ficus glumosa as a potential natural antioxidant and anti-cancer remedy.

18.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915848

RESUMO

Previous reports have illustrated that the incidence and mortality of cancer are increasing year by year worldwide. In addition, the occurrence, development, recurrence and metastasis of cancer are closely related to inflammation, which is a kind of defensive response of human body to various stimuli. As an important medicinal plant in Africa, Warburgia ugandensis has been reported to have certain anti-inflammatory and anti-proliferative activities, but its specific components and mechanisms of action remain elusive. To tackle this challenge, affinity ultrafiltration with drug targets of interest coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS/MS) could be utilized to quickly screen out bioactive constituents as ligands against target enzymes from complex extracts of this plant. AUF-HPLC-MS/MS with four drug targets, i.e., cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), topoisomerase I (Top I) and topoisomerase II (Top II) were used to rapidly screen and characterize the anti-inflammatory and anti-proliferative natural ligands from W. ugandensis, and the resulting potential active compounds as ligands with specific binding affinity to COX-2, 5-LOX, Top I and Top II, were isolated with modern separation and purification techniques and identified with spectroscopic method like NMR, and then their antiinflammatory and anti-proliferative activities were tested to verify the screening results from AUF-HPLC-MS/MS. Compounds 1 and 2, which screened out and identified from W. ugandensis showed remarkable binding affinity to COX-2, 5-LOX, Top I and Top II with AUF-HPLC-MS/MS. In addition, 1 new compound (compound 3), together with 5 known compounds were also isolated and identified from W. ugandensis. The structure of compound 3 was elucidated by extensive 1D, 2D NMR data and UPLC-QTOF-MS/MS. Furthermore, compounds 1 and 2 were further proved to possess both anti-inflammatory and anti-proliferative activities which are in good agreement with the screening results using AUF-HPLC-MS/MS. This work showcased an efficient method for quickly screening out bioactive components with anti-inflammatory and anti-proliferative activity from complex medicinal plant extracts using AUF-HPLC-MS/MS with target enzymes of interest, and also demonstrated that neolignanamides (compounds 1 and 2) from W. ugandensis would be the active components responsible for its anti-inflammatory and anti-proliferative activity with the potential to treat cancer and inflammation.

19.
J Chromatogr A ; 1621: 461024, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32178862

RESUMO

Screening for anti-anaerobic drug candidates is still challenging although the anaerobic bacteria are important sources for human infections, because the method for anti-anaerobic activity testing is not readily available with low-cost and -expertise. We report a novel method for the determination of the anti-anaerobic activity of drug candidates by automated headspace-gas chromatography (HS-GC). Anaerobic bacteria were inoculated in an anaerobic atmosphere or rapidly using sterile syringe in an air-tight manner, and incubated with and without drugs for 48 h. The metabolic acidities of the cultured media were used as an indicator of cell activities and measured as end-products in place by HS-GC after being completely converted to CO2 with sodium bicarbonate. The present method is precise (relative standard deviation is below 5%) and validated by excellent agreements with a reference method on the determinations of the inhibition rates (root-mean-square error = 10%, n = 48) and half maximal inhibitory concentrations (R2 = 0.996, n = 8) of both pure drug compounds and plant extracts. Advantageously, the present method is sensitive in response to cell activity, safe with regard to cross contamination, and suitable for routine screening of diversified drug candidates for anti-anaerobic activity.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Bactérias Anaeróbias/efeitos dos fármacos , Bactérias Anaeróbias/metabolismo , Cromatografia Gasosa/métodos , Meios de Cultura
20.
Plants (Basel) ; 9(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872157

RESUMO

Plukenetia huayllabambana is an edible plant traditionally used to cure wounds and various infections. The present work assessed, for the first time, the antibacterial efficacy of solvent fractions from P. huayllabambana fruits. The crude methanol extract was obtained applying ultrasound-assisted extraction, followed by partitioning through successive depletion among solvents of increasing polarity to yield fractions (n-hexane, dichloromethane, ethyl acetate, and n-butanol). The minimal inhibitory concentration (MIC) was determined following antibacterial testing, using the broth microdilution technique against a panel of drug-resistant Gram-negative and Gram-positive bacteria. Possible modes of action of the most active fraction were also investigated. Gas chromatography-mass spectrometry (GC-MS) was used to identify phytocompounds that may account for the recorded activities. Methanol, n-hexane (PH-n-Hex), and ethyl acetate extracts inhibited 100% of studied bacteria, with the recorded MIC ranging from 0.125-1 mg/mL. PH-n-Hex appeared as the most active partition, exerting a bacteriostatic effect. PH-n-Hex probably acts by interfering with bacterial biofilm formation, proton pumps, and bacterial cell membrane integrity. The GC-MS analysis of PH-n-Hex led to the identification of 11 potentially bioactive components, including fatty acids, phytosterol, and diterpene alcohol as major ones. P. huayllabambana can be considered as a plant of pharmacological value-a source of potent anti-infective drug entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA