Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391269

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Obesity in middle age increases AD risk and severity, which is alarming given that obesity prevalence peaks at middle age and obesity rates are accelerating worldwide. Midlife, but not late-life obesity increases AD risk, suggesting that this interaction is specific to preclinical AD. AD pathology begins in middle age, with accumulation of amyloid beta (Aß), hyperphosphorylated tau, metabolic decline, and neuroinflammation occurring decades before cognitive symptoms appear. We used a transcriptomic discovery approach in young adult (6.5 months old) male and female TgF344-AD rats that overexpress mutant human amyloid precursor protein and presenilin-1 and wild-type (WT) controls to determine whether inducing obesity with a high-fat/high-sugar "Western" diet during preclinical AD increases brain metabolic dysfunction in dorsal hippocampus (dHC), a brain region vulnerable to the effects of obesity and early AD. Analyses of dHC gene expression data showed dysregulated mitochondrial and neurotransmission pathways, and up-regulated genes involved in cholesterol synthesis. Western diet amplified the number of genes that were different between AD and WT rats and added pathways involved in noradrenergic signaling, dysregulated inhibition of cholesterol synthesis, and decreased intracellular lipid transporters. Importantly, the Western diet impaired dHC-dependent spatial working memory in AD but not WT rats, confirming that the dietary intervention accelerated cognitive decline. To examine later consequences of early transcriptional dysregulation, we measured dHC monoamine levels in older (13 months old) AD and WT rats of both sexes after long-term chow or Western diet consumption. Norepinephrine (NE) abundance was significantly decreased in AD rats, NE turnover was increased, and the Western diet attenuated the AD-induced increases in turnover. Collectively, these findings indicate obesity during prodromal AD impairs memory, potentiates AD-induced metabolic decline likely leading to an overproduction of cholesterol, and interferes with compensatory increases in NE transmission.

2.
Bioinform Adv ; 4(1): vbae064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827413

RESUMO

Motivation: The recent spatial transcriptomics (ST) technologies have enabled characterization of gene expression patterns and spatial information, advancing our understanding of cell lineages within diseased tissues. Several analytical approaches have been proposed for ST data, but effectively utilizing spatial information to unveil the shared variation with gene expression remains a challenge. Results: We introduce STew, a Spatial Transcriptomic multi-viEW representation learning method, to jointly analyze spatial information and gene expression in a scalable manner, followed by a data-driven statistical framework to measure the goodness of model fit. Through benchmarking using human dorsolateral prefrontal cortex and mouse main olfactory bulb data with true manual annotations, STew achieved superior performance in both clustering accuracy and continuity of identified spatial domains compared with other methods. STew is also robust to generate consistent results insensitive to model parameters, including sparsity constraints. We next applied STew to various ST data acquired from 10× Visium, Slide-seqV2, and 10× Xenium, encompassing single-cell and multi-cellular resolution ST technologies, which revealed spatially informed cell type clusters and biologically meaningful axes. In particular, we identified a proinflammatory fibroblast spatial niche using ST data from psoriatic skins. Moreover, STew scales almost linearly with the number of spatial locations, guaranteeing its applicability to datasets with thousands of spatial locations to capture disease-relevant niches in complex tissues. Availability and implementation: Source code and the R software tool STew are available from github.com/fanzhanglab/STew.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA