Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 39, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279115

RESUMO

BACKGROUND: The design of DNA materials with specific nanostructures for biomedical tissue engineering applications remains a challenge. High-dimensional DNA nanomaterials are difficult to prepare and are unstable; moreover, their synthesis relies on heavy metal ions. Herein, we developed a bimodal DNA self-origami material with good biocompatibility and differing functions using a simple synthesis method. We simulated and characterized this material using a combination of oxDNA, freeze-fracture electron microscopy, and atomic force microscopy. Subsequently, we optimized the synthesis procedure to fix the morphology of this material. RESULTS: Using molecular dynamics simulation, we found that the bimodal DNA self-origami material exhibited properties of spontaneous stretching and curling and could be fixed in a single morphology via synthesis control. The application of different functional nucleic acids enabled the achievement of various biological functions, and the performance of functional nucleic acids was significantly enhanced in the material. Consequently, leveraging the various functional nucleic acids enhanced by this material will facilitate the attainment of diverse biological functions. CONCLUSION: The developed design can comprehensively reveal the morphology and dynamics of DNA materials. We thus report a novel strategy for the construction of high-dimensional DNA materials and the application of functional nucleic acid-enhancing materials.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica , Nanotecnologia/métodos
2.
J Nanobiotechnology ; 22(1): 74, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395929

RESUMO

Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M2 polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Hidrogéis , Alicerces Teciduais/química , Gelatina , Células-Tronco , Hipóxia
3.
J Nanobiotechnology ; 21(1): 269, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574546

RESUMO

Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.


Assuntos
Inflamassomos , Nanofibras , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Interações Hidrofóbicas e Hidrofílicas
4.
Arthroscopy ; 39(2): 371-372, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604003

RESUMO

The goal of meniscal tissue engineering is tissue remodeling and functional recovery. Autologous, tissue-engineered adipose-derived stem cell (ADSC) sheets promote meniscal regeneration in rabbit meniscal defects in vivo. Moreover, compared with a control group, in the ADSC sheet model, both histologic scores and gene expression are more similar to normal meniscal tissue. ADSC sheets promote meniscal regeneration regardless of whether the defect involves the whole width or inner half of a meniscal defect. Mechanical properties are also important, and experimental data show encouraging mechanical properties of meniscus tissue reconstructed from ADSC sheets. Cell sheet technology is a promising therapeutic strategy for meniscal regenerative medicine and tissue engineering. Theoretically, cell sheet transplantation could result in superior outcomes to traditional cell-free scaffolds, and further research is needed before clinical application.


Assuntos
Menisco , Animais , Coelhos , Engenharia Tecidual , Regeneração , Células-Tronco
5.
J Nanobiotechnology ; 20(1): 25, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991615

RESUMO

BACKGROUND: The regeneration and repair of articular cartilage remains a major challenge for clinicians and scientists due to the poor intrinsic healing of this tissue. Since cartilage injuries are often clinically irregular, tissue-engineered scaffolds that can be easily molded to fill cartilage defects of any shape that fit tightly into the host cartilage are needed. METHOD: In this study, bone marrow mesenchymal stem cell (BMSC) affinity peptide sequence PFSSTKT (PFS)-modified chondrocyte extracellular matrix (ECM) particles combined with GelMA hydrogel were constructed. RESULTS: In vitro experiments showed that the pore size and porosity of the solid-supported composite scaffolds were appropriate and that the scaffolds provided a three-dimensional microenvironment supporting cell adhesion, proliferation and chondrogenic differentiation. In vitro experiments also showed that GelMA/ECM-PFS could regulate the migration of rabbit BMSCs. Two weeks after implantation in vivo, the GelMA/ECM-PFS functional scaffold system promoted the recruitment of endogenous mesenchymal stem cells from the defect site. GelMA/ECM-PFS achieved successful hyaline cartilage repair in rabbits in vivo, while the control treatment mostly resulted in fibrous tissue repair. CONCLUSION: This combination of endogenous cell recruitment and chondrogenesis is an ideal strategy for repairing irregular cartilage defects.


Assuntos
Condrogênese/efeitos dos fármacos , Matriz Extracelular Descelularizada , Hidrogéis , Oligopeptídeos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Coelhos , Engenharia Tecidual/métodos
6.
J Cell Physiol ; 236(6): 4244-4257, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33605451

RESUMO

The purpose of this study was to investigate the feasibility of adipose-derived stem cells (ADSCs) as the seed cells of cartilage tissue engineering. ADSCs were isolated from adipose tissue that was harvested under sterile conditions from the inguen fold of porcines and cultured in vitro. Acellular cartilage extracellular matrix (ACECM) scaffolds of pigs were then constructed. Moreover, inflammatory cells, as well as cellular and humoral immune responses, were detected using hematoxylin and eosin staining staining, immunohistochemical staining, and western blot analysis. The results showed that the cartilage complex constructed by ADSCs and ACECM through tissue engineering successfully repaired the cartilage defect of the pig knee joint. The in vivo repair experiment showed no significant difference between chondrocytes, ADSCs, and induced ADSCs, indicating that ADSCs do not require in vitro induction and have the potential for chondrogenic differentiation in the environment around the knee joint. In addition, pig-derived acellular cartilage scaffolds possess no obvious immune inflammatory response when used in xenotransplantation. ADSCs may serve as viable seed cells for cartilage tissue engineering.


Assuntos
Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Condrócitos/transplante , Condrogênese , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Regeneração , Alicerces Teciduais , Tecido Adiposo/citologia , Animais , Doenças das Cartilagens/imunologia , Doenças das Cartilagens/metabolismo , Doenças das Cartilagens/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Imunidade Humoral , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Suínos , Porco Miniatura , Engenharia Tecidual
7.
Cell Tissue Bank ; 20(3): 351-365, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31218457

RESUMO

The extracellular matrix (ECM) is a dynamic and intricate three-dimensional (3D) microenvironment with excellent biophysical, biomechanical, and biochemical properties that may directly or indirectly regulate cell behavior, including proliferation, adhesion, migration, and differentiation. Compared with tissue-derived ECM, cell-derived ECM potentially has more advantages, including less potential for pathogen transfer, fewer inflammatory or anti-host immune responses, and a closer resemblance to the native ECM microenvironment. Different types of cell-derived ECM, such as adipose stem cells, synovium-derived stem cells and bone marrow stromal cells, their effects on articular chondrocytes which have been researched. In this study, we aimed to develop a 3D cell culture substrate using decellularized ECM derived from human umbilical cord-derived mesenchymal stem cells (hUCMSCs), and evaluated the effects on articular chondrocytes. We evaluated the morphology and components of hUCMSC-derived ECM using physical and chemical methods. Morphological, histological, immunohistochemical, biochemical, and real-time PCR analyses demonstrated that proliferation and differentiation capacity of chondrocytes using the 3D hUCMSC-derived ECM culture substrate was superior to that using non-coated two-dimensional plastic culture plates. In conclusion, 3D decellularized ECM derived from hUCMSCs offers a tissue-specific microenvironment for in vitro culture of chondrocytes, which not only markedly promoted chondrocyte proliferation but also preserved the differentiation capacity of chondrocytes. Therefore, our findings suggest that a 3D cell-derived ECM microenvironment represents a promising prospect for autologous chondrocyte-based cartilage tissue engineering and regeneration. The hUCMSC-derived ECM as a biomaterial is used for the preparation of scaffold or hybrid scaffold products which need to further study in the future.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis/metabolismo , Cartilagem Articular/citologia , Adesão Celular , Técnicas de Cultura de Células , Movimento Celular , Condrócitos/metabolismo , Condrogênese , Fibronectinas/química , Humanos , Inflamação , Coelhos , Engenharia Tecidual/instrumentação , Alicerces Teciduais
8.
J Cell Physiol ; 233(3): 1940-1951, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28548713

RESUMO

Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering.


Assuntos
Cartilagem Articular/lesões , Terapia Baseada em Transplante de Células e Tecidos/métodos , Condrócitos/transplante , Transplante de Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Cartilagem Articular/citologia , Comunicação Celular/fisiologia , Condrócitos/citologia , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais/citologia
9.
Crit Rev Eukaryot Gene Expr ; 28(4): 285-310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30311578

RESUMO

Articular cartilage defects have very limited self-repair potential, and traditional bone marrow-stimulating therapy is not effective. Cartilage tissue engineering using bone marrow mesenchymal stem cells (BMSCs) and adipose tissue-derived mesenchymal stem cells (ADSCs) is considered an attractive treatment for cartilage lesions and osteoarthritis. However, studies proved that both BMSCs and ADSCs have their own advantages and shortcomings, including their sources, isolation methods, characterizations and differentiation potential. Understanding the properties and differences between ADSCs and BMSCs is important for clinical application in cartilage regeneration. This review provides an overview of BMSCs and ADSCs based on their characterization, isolation. Then, we summarized their differentiation potential in different experimental conditions. Finally, we discuss the applications of BMSCs and ADSCs in scaffold-free and scaffold-based cartilage tissue engineering. Based on different properties of BMSCs and ADSCs, and patient's physical condition, a more suitable therapeutic strategy can be selected.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Cartilagem/fisiologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Cartilagem/citologia , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/fisiologia
10.
Cell Tissue Res ; 372(1): 13-22, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29368258

RESUMO

There are many factors to consider in the field of tissue engineering. For articular cartilage repair, this includes seed cells, scaffolds and chondrotrophic hormones. This review primarily focuses on the seed cells and scaffolds. Extracellular matrix proteins provide a natural scaffold for cell attachment, proliferation and differentiation. The structure and composition of tissue-derived scaffolds and native tissue are almost identical. As such, tissue-derived scaffolds hold great promise for biomedical applications. However, autologous tissue-derived scaffolds also have many drawbacks for transplantation, as harvesting autografts is limited to available donor sites and requires secondary surgery, therefore imparting additional damage to the body. This review summarizes and analyzes various cell sources and tissue-derived scaffolds applied in orthopedic tissue engineering.


Assuntos
Cartilagem Articular/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Humanos
11.
Cell Tissue Res ; 373(2): 337-350, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29397425

RESUMO

Meniscus injuries appear to be becoming increasingly common and pose a challenge for orthopedic surgeons. However, there is no curative approach for dealing with defects in the inner meniscus region due to its avascular nature. Numerous strategies have been applied to regenerate and repair meniscus defects and native tissue-based strategies have received much attention. Native tissue usually has good biocompatibility, excellent mechanical properties and a suitable microenvironment for cellular growth, adhesion, redifferentiation, extracellular matrix deposition and remodeling. Classically, native tissue-based strategies for meniscus repair and regeneration are divided into autogenous and heterogeneous tissue transplantation. Autogenous tissue transplantation is performed more widely than heterogeneous tissue transplantation because there is no immunological rejection and the success rates are higher. This review first discusses the native meniscus structure and function and then focuses on the use of the autogenous tissue for meniscus repair and regeneration. Finally, it summarizes the advantages and disadvantages of heterogeneous tissue transplantation. We hope that this review provides some suggestions for the future design of meniscus repair and regeneration strategies.


Assuntos
Menisco/patologia , Menisco/fisiopatologia , Regeneração , Cicatrização , Animais , Humanos , Menisco/transplante , Alicerces Teciduais/química
12.
Connect Tissue Res ; 59(3): 233-244, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28718671

RESUMO

BACKGROUND: Freeze-dried and irradiated allograft bone (FIAB) is more easily impacted than fresh-frozen allograft bone (FAB), but has weaker incorporation efficiency. We combined FIAB with fresh autologous coagula to enhance donor-host incorporation after impaction during hip revision. METHODS: Thirty adult male Sprague-Dawley (SD) rats were sacrificed for bone allograft harvesting, and nine male rats were subjected to ectopic bone allograft implantation. For each rat, the container on the left (study) side was filled with freeze-dried allograft bone powder and fresh autologous blood coagula, whereas the right (control) side was filled with freeze-dried allograft bone powder and physiological saline. The extent of angiogenesis (VEGFα) was investigated at postoperative weeks 1, 4, and 8. The deformability of the material was evaluated by performing a confined-impaction mechanical test. RESULTS: At postoperative weeks 4 and 8, angiogenesis within FIAB on the left side was more pronounced than that on the right side. At postoperative week 1, the left side showed significantly higher VEGFα expression than that on the right side. The delta ratios of compression of the allografts were found to be influenced by bone height and impaction frequency, but not by stiffness or elastic modulus (EM). CONCLUSION: Supplementation with fresh autologous coagula promoted angiogenesis within the FIABs. Moreover, FIABs were equivalent to FABs in terms of deformability.


Assuntos
Aloenxertos , Indutores da Angiogênese , Transplante Ósseo , Transplante Homólogo , Animais , Doenças Ósseas/terapia , Transplante Ósseo/métodos , Módulo de Elasticidade/fisiologia , Liofilização , Masculino , Ratos Sprague-Dawley , Transplante Homólogo/métodos
13.
J Nanosci Nanotechnol ; 16(3): 2264-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455627

RESUMO

This study aimed to compare the microstructure and nanomechanical properties of single trabecular bone in different regions of osteonecrosis of the femoral head. Osteonecrotic femoral heads were taken from 20 patients undergoing total hip arthroplasties between 2011 and 2014. Following incision, resin was embedded and polished, and divided into four regions according to the type of pathologic change; i.e., subchondral bone, and necrotic, sclerotic, and healthy regions. Indents from a single trabecular bone of each region were randomly selected to undergo nanoindentation. The results are (1) The elastic modulus and degree of hardness were significantly elevated in the sclerotic region, but there were no differences in necrotic and subchondral bone regions compared with healthy regions. (2) The elastic modulus and hardness of the single trabecular bone were significantly greater in central versus edge regions (for all regions). The conclusions are (1) The mechanical properties of single bone trabeculae were not markedly altered in the necrotic region. (2) The elastic modulus and degree of hardness increased significantly between the edge and central regions, regardless of whether the bone was normal or osteonecrotic.


Assuntos
Cabeça do Fêmur/ultraestrutura , Osteonecrose/patologia , Módulo de Elasticidade , Cabeça do Fêmur/patologia , Dureza , Humanos , Nanotecnologia
14.
Cell Tissue Bank ; 16(1): 123-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24756221

RESUMO

The present study aims to investigate the feasibility of tissue-engineered cartilage constructed in vivo and in vitro by dynamically culturing adipose-derived stem cells (ADSCs) with an articular cartilage acellular matrix in a bioreactor and subsequently implanting the cartilage in nude mice. ADSCs were proliferated, combined with three dimensional scaffolds (cell density: 5 × 10(7)/mL) and subsequently placed in a bioreactor and culture plate for 3 weeks. In the in vivo study, complexes cultured for 1 week under dynamic or static states were subcutaneously implanted into nude mice and collected after 3 weeks. Indicators such as gross morphology, histochemistry and immunohistochemistry were examined. In the in vitro study, histological observation showed that most scaffolds in the dynamic group were absorbed, and cell proliferation and matrix secretion were significant. Positive staining of safranin-O and alcian blue II collagen stain in the dynamic group was significantly stronger than that in the static culture group. In the in vivo study, cartilage-like tissues formed in the specimens of the two groups. Histological examination showed that cell distribution in the dynamic group was relatively more uniform than in the static group, and matrix secretion was relatively stronger. Bioreactor culturing can promote ADSC proliferation and cartilage differentiation and is thus a suitable method for constructing tissue-engineered cartilage in vivo.


Assuntos
Tecido Adiposo/citologia , Reatores Biológicos , Cartilagem/citologia , Células-Tronco , Engenharia Tecidual , Animais , Feminino , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Alicerces Teciduais
15.
Biomed Eng Online ; 13: 80, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24950704

RESUMO

BACKGROUND: Osteochondral interface regeneration is challenging for functional and integrated cartilage repair. Various layered scaffolds have been used to reconstruct the complex interface, yet the influence of the permeability of the layered structure on cartilage defect healing remains largely unknown. METHODS: We designed and fabricated a novel bilayered scaffold using articular cartilage extracellular matrix (ACECM) and hydroxyapatite (HAp), involving a porous, oriented upper layer and a dense, mineralised lower layer. By optimising the HAp/ACECM ratio, differing pore sizes and porosities were obtained simultaneously in the two layers. To evaluate the effects of permeability on cell behaviour, rabbit chondrocytes were seeded. RESULTS: Morphological observations demonstrated that a gradual interfacial region was formed with pore sizes varying from 128.2 ± 20.3 to 21.2 ± 3.1 µm. The permeability of the bilayered scaffold decreased with increasing compressive strain and HAp content. Mechanical tests indicated that the interface was stable to bearing compressive and shear loads. Accordingly, the optimum HAp/ACECM ratio (7 w/v%) in the layer to mimic native calcified cartilage was found. Chondrocytes could not penetrate the interface and resided only in the upper layer, where they showed high cellularity and abundant matrix deposition. CONCLUSIONS: Our findings suggest that a bilayered scaffold with low permeability, rather than complete isolation, represents a promising candidate for osteochondral interface tissue engineering.


Assuntos
Cartilagem Articular/citologia , Durapatita/farmacologia , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Durapatita/metabolismo , Matriz Extracelular/efeitos dos fármacos , Estudos de Viabilidade , Fenômenos Mecânicos , Minerais/metabolismo , Permeabilidade , Porosidade , Coelhos
16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(7): 889-895, 2024 Jul 15.
Artigo em Zh | MEDLINE | ID: mdl-39013829

RESUMO

Objective: To summarize the classic and latest treatment techniques for localized knee cartilage lesions in clinical practice and create a new comprehensive clinical decision-making process. Methods: The advantages and limitations of various treatment methods for localized knee cartilage lesions were summarized by extensive review of relevant literature at home and abroad in recent years. Results: Currently, there are various surgical methods for treating localized knee cartilage injuries in clinical practice, each with its own pros and cons. For patients with cartilage injuries less than 2 cm 2 and 2-4 cm 2 with bone loss are recommended to undergo osteochondral autograft (OAT) and osteochondral allograft (OCA) surgeries. For patients with cartilage injuries less than 2 cm 2 and 2-4 cm 2 without bone loss had treatment options including bone marrow-based techniques (micro-fracture and ogous matrix induced chondrogenesis), autologous chondrocyte implantation (ACI)/matrix-induced ACI, particulated juvenile allograft cartilage (PJAC), OAT, and OCA. For patients with cartilage injuries larger than 4 cm 2 with bone loss were recommended to undergo OCA. For patients with cartilage injuries larger than 4 cm 2 without bone loss, treatment options included ACI/matrix-induced ACI, OAT, and PJAC. Conclusion: There are many treatment techniques available for localized knee cartilage lesions. Treatment strategy selection should be based on the size and location of the lesion, the extent of involvement of the subchondral bone, and the level of evidence supporting each technique in the literature.


Assuntos
Cartilagem Articular , Condrócitos , Traumatismos do Joelho , Articulação do Joelho , Transplante Autólogo , Humanos , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia , Condrócitos/transplante , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Transplante Ósseo/métodos , Transplante Homólogo , Aloenxertos , Engenharia Tecidual/métodos , Procedimentos de Cirurgia Plástica/métodos
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 748-754, 2024 Jun 15.
Artigo em Zh | MEDLINE | ID: mdl-38918198

RESUMO

Objective: To investigate the construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal (3D) printing technology and evaluate its biocompatibility. Methods: The fresh pig meniscus was decellularized by improved physicochemical method to obtain decellularized meniscus matrix homogenate. Gross observation, HE staining, and DAPI staining were used to observe the decellularization effect. Toluidine blue staining, safranin O staining, and sirius red staining were used to evaluate the retention of mucopolysaccharide and collagen. Then, the decellularized meniscus matrix bioink was prepared, and the new tissue engineered meniscus scaffold was prepared by low temperature deposition 3D printing technology. Scanning electron microscopy was used to observe the microstructure. After co-culture with adipose-derived stem cells, the cell compatibility of the scaffolds was observed by cell counting kit 8 (CCK-8), and the cell activity and morphology were observed by dead/live cell staining and cytoskeleton staining. The inflammatory cell infiltration and degradation of the scaffolds were evaluated by subcutaneous experiment in rats. Results: The decellularized meniscus matrix homogenate appeared as a transparent gel. DAPI and histological staining showed that the immunogenic nucleic acids were effectively removed and the active components of mucopolysaccharide and collagen were remained. The new tissue engineered meniscus scaffolds was constructed by low temperature deposition 3D printing technology and it had macroporous-microporous microstructures under scanning electron microscopy. CCK-8 test showed that the scaffolds had good cell compatibility. Dead/live cell staining showed that the scaffold could effectively maintain cell viability (>90%). Cytoskeleton staining showed that the scaffolds were benefit for cell adhesion and spreading. After 1 week of subcutaneous implantation of the scaffolds in rats, there was a mild inflammatory response, but no significant inflammatory response was observed after 3 weeks, and the scaffolds gradually degraded. Conclusion: The novel tissue engineered meniscus scaffold constructed by low temperature deposition 3D printing technology has a graded macroporous-microporous microstructure and good cytocompatibility, which is conducive to cell adhesion and growth, laying the foundation for the in vivo research of tissue engineered meniscus scaffolds in the next step.


Assuntos
Menisco , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Suínos , Ratos , Menisco/citologia , Materiais Biocompatíveis , Ratos Sprague-Dawley , Células Cultivadas , Meniscos Tibiais/citologia , Microscopia Eletrônica de Varredura
18.
Int J Biol Macromol ; 263(Pt 1): 130237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368980

RESUMO

Breast cancer has become the most diagnosed cancer type, endangering the health of women. Patients with breast resection are likely to suffer serious physical and mental trauma. Therefore, breast reconstruction becomes an important means of postoperative patient rehabilitation. Polyvinyl alcohol hydrogel has great potential in adipose tissue engineering for breast reconstruction. However, its application is limited because of the lack of bioactive factors and poor structural stability. In this study, we prepared biodegradable polylactic acid-glycolic acid copolymer/polycaprolactone/gelatin (PPG) nanofibers. We then combined them with polyvinyl alcohol/collagen to create tissue engineering scaffolds to overcome limitations. We found that PPG fibers formed amide bonds with polyvinyl alcohol/collagen scaffolds. After chemical crosslinking, the number of amide bonds increased, leading to a significant improvement in their mechanical properties and thermal stability. The results showed that compared with pure PVA scaffolds, the maximum compressive stress of the scaffold doped with 0.9 g nanofibers increased by 500 %, and the stress loss rate decreased by 40.6 % after 10 cycles of compression. The presence of natural macromolecular gelatin and the changes in the pore structure caused by nanofibers provide cells with richer and more three-dimensional adsorption sites, allowing them to grow in three dimensions on the scaffold. So, the hydrogel scaffold by reinforcing polyvinyl alcohol hydrogel with PPG fibers is a promising breast reconstruction method.


Assuntos
Gelatina , Nanofibras , Humanos , Feminino , Gelatina/química , Engenharia Tecidual/métodos , Álcool de Polivinil/química , Nanofibras/química , Colágeno/química , Alicerces Teciduais/química , Poliésteres/química , Amidas
19.
Artigo em Inglês | MEDLINE | ID: mdl-38899984

RESUMO

The meniscus plays a crucial role in the proper functioning of the knee joint, and when it becomes damaged, partial removal or replacement is necessary to restore proper function. Understanding the stress and deformation of the meniscus during various movements is essential for developing effective materials for meniscus repair. However, accurately estimating the contact mechanics of the knee joint can be challenging due to its complex shape and the dynamic changes it undergoes during movement. To address this issue, the open-source software SCONE can be used to establish a kinematics model that monitors the different states of the knee joint during human motion and obtains relevant gait kinematics data. To evaluate the stress and deformation of the meniscus during normal human movement, values of different states in the movement gait can be selected for finite element analysis (FEA) of the knee joint. This analysis enables researchers to assess changes in the meniscus. To evaluate meniscus damage, it is necessary to obtain changes in its mechanical behavior during abnormal movements. This information can serve as a reference for designing and optimizing the mechanical performance of materials used in meniscus repair and replacement.

20.
J Orthop Translat ; 46: 18-32, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774916

RESUMO

Background: Osteochondral regeneration has long been recognized as a complex and challenging project in the field of tissue engineering. In particular, reconstructing the osteochondral interface is crucial for determining the effectiveness of the repair. Although several artificial layered or gradient scaffolds have been developed recently to simulate the natural interface, the functions of this unique structure have still not been fully replicated. In this paper, we utilized laser micro-patterning technology (LMPT) to modify the natural osteochondral "plugs" for use as grafts and aimed to directly apply the functional interface unit to repair osteochondral defects in a goat model. Methods: For in vitro evaluations, the optimal combination of LMPT parameters was confirmed through mechanical testing, finite element analysis, and comparing decellularization efficiency. The structural and biological properties of the laser micro-patterned osteochondral implants (LMP-OI) were verified by measuring the permeability of the interface and assessing the recellularization processes. In the goat model for osteochondral regeneration, a conical frustum-shaped defect was specifically created in the weight-bearing area of femoral condyles using a customized trephine with a variable diameter. This unreported defect shape enabled the implant to properly self-fix as expected. Results: The micro-patterning with the suitable pore density and morphology increased the permeability of the LMP-OIs, accelerated decellularization, maintained mechanical stability, and provided two relative independent microenvironments for subsequent recellularization. The LMP-OIs with goat's autologous bone marrow stromal cells in the cartilage layer have securely integrated into the osteochondral defects. At 6 and 12 months after implantation, both imaging and histological assessments showed a significant improvement in the healing of the cartilage and subchondral bone. Conclusion: With the natural interface unit and zonal recellularization, the LMP-OI is an ideal scaffold to repair osteochondral defects especially in large animals. The translational potential of this article: These findings suggest that such a modified xenogeneic osteochondral implant could potentially be explored in clinical translation for treatment of osteochondral injuries. Furthermore, trimming a conical frustum shape to the defect region, especially for large-sized defects, may be an effective way to achieve self-fixing for the implant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA