Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 72(20): 6963-6976, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34283218

RESUMO

Heterosis of grain yield is closely associated with heading date in crops. Gene combinations of the major heading date genes Ghd7, Ghd8, and Hd1 play important roles in enhancing grain yield and adaptation to ecological regions in rice. However, the predominant three-gene combinations for a specific ecological region remain unclear in both three-line and two-line hybrids. In this study, we sequenced these three genes of 50 cytoplasmic male sterile/maintainer lines, 31 photo-thermo-sensitive genic male sterile lines, and 109 restorer lines. Sequence analysis showed that hybrids carrying strong functional alleles of Ghd7 and Hd1 and non-functional Ghd8 are predominant in three-line hybrids and are recommended for rice production in the subtropics around 30°N/S. Hybrids carrying strong functional Ghd7 and Ghd8 and non-functional Hd1 are predominant in two-line hybrids and are recommended for low latitude areas around 23.5°N/S rich in photothermal resources. Hybrids carrying strong functional Ghd7 and Ghd8 and functional Hd1 were not identified in commercial hybrids in the middle and lower reaches of the Yangtze River, but they have high yield potential in tropical regions because they have the strongest photoperiod sensitivity. Based on these findings, two genic sterile lines, Xiangling 628S and C815S, whose hybrids often head very late, were diagnosed with these three genes, and Hd1 was targeted to be knocked out in Xiangling 628S and replaced with hd1 in C815S. The hybrids developed from both modified sterile lines in turn had appropriate heading dates and significantly improved grain yield. This study provides new insights for breeding design to develop hybrids for various regions.


Assuntos
Oryza , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Genet ; 21(1): 10, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013862

RESUMO

BACKGROUND: Limited genetic resource in the cultivated rice may hinder further yield improvement. Some valuable genes that contribute to rice yield may be lost or lacked in the cultivated rice. Identification of the quantitative trait locus (QTL) for yield-related traits such as thousand-grain weight (TGW) from wild rice speices is desired for rice yield improvement. RESULTS: In this study, sixteen TGW QTL were identified from a recombinant inbred line (RIL) population derived from the cross between the introgression line K1561 of Oryza minuta and the rice cultivar G1025. TGW12, One of most effective QTL was mapped to the region of 204.12 kb between the marker 2,768,345 and marker 2,853,491 of the specific locus amplified fragment (SLAF). The origin of TGW12 was tested using three markers nearby or within the TGW12 region, but not clarified yet. Our data indicated thirty-two open reading fragments (ORFs) were present in the region. RT-PCR analysis and sequence alignment showed that the coding domain sequences of ORF12, one MADS-box gene, in G1025 and K1561 were different due to alternative slicing, which caused premature transcription termination. The MADS-box gene was considered as a candidate of TGW12. CONCLUSION: The effective QTL, TGW12, was mapped to a segment of 204.12 kb using RILs population and a MADS-box gene was identified among several candidate genes in the segment. The region of TGW12 should be further narrowed and creation of transgenic lines will reveal the gene function. TGW12 could be applied for improvement of TGW in breeding program.


Assuntos
Cruzamentos Genéticos , Genes de Plantas , Genética Populacional , Oryza/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sementes/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Endogamia , Repetições de Microssatélites , Fenótipo , Melhoramento Vegetal
3.
New Phytol ; 208(4): 1056-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26147403

RESUMO

Rice cultivars have been adapted to favorable ecological regions and cropping seasons. Although several heading date genes have separately made contributions to this adaptation, the roles of gene combinations are still unclear. We employed a map-based cloning approach to isolate a heading date gene, which coordinated the interaction between Ghd7 and Ghd8 to greatly delay rice heading. We resequenced these three genes in a germplasm collection to analyze natural variation. Map-based cloning demonstrated that the gene largely affecting the interaction between Ghd7 and Ghd8 was Hd1. Natural variation analysis showed that a combination of loss-of-function alleles of Ghd7, Ghd8 and Hd1 contributes to the expansion of rice cultivars to higher latitudes; by contrast, a combination of pre-existing strong alleles of Ghd7, Ghd8 and functional Hd1 (referred as SSF) is exclusively found where ancestral Asian cultivars originated. Other combinations have comparatively larger favorable ecological scopes and acceptable grain yield. Our results indicate that the combinations of Ghd7, Ghd8 and Hd1 largely define the ecogeographical adaptation and yield potential in rice cultivars. Breeding varieties with the SSF combination are recommended for tropical regions to fully utilize available energy and light resources and thus produce greater yields.


Assuntos
Aclimatação/genética , Biomassa , Flores , Genes de Plantas , Variação Genética , Oryza/genética , Proteínas de Plantas/genética , Alelos , Ásia , Sequência de Bases , Cruzamento , Cruzamentos Genéticos , Genótipo , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
4.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168374

RESUMO

Upstream open reading frames (uORFs) are prevalent in eukaryotic mRNAs. They act as a translational control element for precisely tuning the expression of the downstream major open reading frame (mORF). uORF variation has been clearly associated with several human diseases. In contrast, natural uORF variants in plants have not ever been identified or linked with any phenotypic changes. The paucity of such evidence encouraged us to generate this database-uORFlight (http://uorflight.whu.edu.cn). It facilitates the exploration of uORF variation among different splicing models of Arabidopsis and rice genes. Most importantly, users can evaluate uORF frequency among different accessions at the population scale and find out the causal single nucleotide polymorphism (SNP) or insertion/deletion (INDEL), which can be associated with phenotypic variation through database mining or simple experiments. Such information will help to make hypothesis of uORF function in plant development or adaption to changing environments on the basis of the cognate mORF function. This database also curates plant uORF relevant literature into distinct groups. To be broadly interesting, our database expands uORF annotation into more species of fungus (Botrytis cinerea and Saccharomyces cerevisiae), plant (Brassica napus, Glycine max, Gossypium raimondii, Medicago truncatula, Solanum lycopersicum, Solanum tuberosum, Triticum aestivum and Zea mays), metazoan (Caenorhabditis elegans and Drosophila melanogaster) and vertebrate (Homo sapiens, Mus musculus and Danio rerio). Therefore, uORFlight will light up the runway toward how uORF genetic variation determines phenotypic diversity and advance our understanding of translational control mechanisms in eukaryotes.


Assuntos
Bases de Dados Genéticas , Eucariotos/metabolismo , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Vertebrados/genética , Animais , Caenorhabditis elegans/genética , Mineração de Dados/métodos , Drosophila melanogaster/genética , Eucariotos/classificação , Fungos/classificação , Fungos/genética , Variação Genética/genética , Humanos , Internet , Plantas/classificação , Plantas/genética , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Vertebrados/classificação
5.
Front Plant Sci ; 9: 1492, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459776

RESUMO

Wild rice possesses a large number of valuable genes that have been lost or do not exist in cultivated rice. To exploit the desirable gene controlling panicle length (PL) in wild rice Oryza minuta, a recombinant inbred line (RIL) population was constructed that was derived from a cross between the long panicle introgression line K1561 with Oryza minuta segments and a short panicle accession G1025. Specific Locus Amplified Fragment (SLAF) sequencing technology was used to uncover single nucleotide polymorphisms (SNPs) and construct the high-density genetic linkage map. Using 201 RIL populations, a high-density genetic map was developed, and spanned 2781.76 cM with an average genetic distance 0.45 cM. The genetic map was composed of 5, 521 markers on 12 chromosomes. Based on this high-density genome map, quantitative trait loci (QTL) for PL were analyzed for 2 years under four environments. Seven QTLs were detected, which were distributed within chromosomes 4, 9, and 10, respectively. pl4.1 was detected twice, and pl10.1 was only detected once. Although pl9.1 was only detected once, it was very near pl9.2 in the genetic map which was detected three times. Thus, we speculate one major QTL exists in the region of pl9.1 and pl9.2 to control PL (temporarily referred to as pl9). pl9 is a potentially novel allele derived from Oryza minuta, and it can be used for genetic improvement of cultivar rice.

6.
Sci China C Life Sci ; 52(12): 1148-55, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20016972

RESUMO

Oryza minuta, a tetraploid wild relative of cultivated rice, is an important source for the genetic improvement. Interspecific hybrids were obtained from the cross of O. sativa L. (IR24) and O. minuta (Acc. No. 101133) with 5.58% crossability, which ranged from 0.11% to 1.62% in the backcross generations. The chromosome numbers of the backcross progenies were 24 to 48. Seven yield-related traits of the parents, hybrid F(1), and backcross progenies were evaluated. Simple sequence repeat markers analysis showed that the polymorphism ratio of SSR bands between IR24 and Acc. No. 101133 was 93.2%. The average donor segment number, length, donor genome size, and percentage of donor genome of 92 BC(3)F(1) plants (2n=24) were 24.1, 17.8 cM, 438.4 cM and 26.2%, respectively. They were complex variation and uneven among the chromosomes. These introgression lines could be used to identify the favorable genes of O. minuta and provide a new platform for the genetic improvement of cultivated rice.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Doenças das Plantas/genética , Poliploidia , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas/genética , Variação Genética , Vigor Híbrido/genética , Hibridização Genética , Imunidade Inata/genética , Repetições Minissatélites/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas/genética , Especificidade da Espécie , Xanthomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA