Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 352(2): 273-280, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202395

RESUMO

As a direct consequence of hyperglycaemia, the excessive generation of ROS is central to the pathogenesis of diabetic cardiomyopathy. We hypothesize that stimulation of high glucose (HG) results in an increased sulfiredoxin (Srx) expression, which regulates ROS signaling through reducing the hyperoxidized peroxiredoxins (Prxs). We show that hyperoxidized Prxs were initially reduced in the preliminary stage but then dramatically increased in advanced stage and these changes corresponded to a significant increase of Srx expression in the heart of diabetic rats. These time-dependent changes were also confirmed in neonatal cardiomyocytes and H9c2 cells treated with HG. Moreover, the reduction rate of hyperoxidized Prxs was greatly improved in the HG 24h group, which had an elevated expression of Srx. Our data also show that HG-induced AP1 activation and Srx expression were almost abolished by JNK inhibitor and N-acetylcysteine (NAC). In addition, siRNA-Srx suppressed HG-induced ANP and ß-MHC gene expression. These observations suggest that activation of AP1 induced by HG is important for the expression of Srx and the reduction of hyperoxidized Prxs in cardiomyocytes. This Srx induction maybe is the pivotal compensatory protection mechanism against oxidative stress in diabetes or hyperglycaemia. Most interestingly, hyperoxidized Prxs/Srx pathway may be involved in the cardiac hypertrophy signaling of diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Hiperglicemia/metabolismo , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Linhagem Celular , Células Cultivadas , MAP Quinase Quinase 4/metabolismo , Miócitos Cardíacos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Peroxirredoxinas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA