Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 63: 1-5, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040155

RESUMO

Viruses are currently the leading cause of foodborne outbreaks, most of which are associated with foods consumed raw. Cold plasma (CP) is an emerging novel nonthermal technology that can be used to surface decontaminate foods. This study investigated CP technology for the nonthermal inactivation of human norovirus surrogates, Tulane virus (TV) and murine norovirus (MNV), on the surface of blueberries. Blueberries (5 g) were weighed into sterile 4 oz. glass jars and inoculated with TV, 5 log PFU/g. Samples were treated with atmospheric CP for 0, 15, 30, 45, and 60 s at a working distance of 7.5 cm with 4 cubic feet/minute (cfm) of CP jet. Temperature readings were taken with an infrared camera prior to, and immediately following, CP treatments. In order to establish the impact of air flow during CP treatment (4 cfm), an additional 7 cfm jet of room temperature air was introduced from a separate nozzle. The experiment was repeated with 90 and 120 s as additional treatment time points. Viral titers were measured immediately after each treatment with a plaque assay using LLC-MK2 cells (TV) or RAW 264.7 cells (MNV). TV was significantly reduced 1.5 PFU/g compared to the control after treatment time of 45s, which was achieved regardless of temperature conditions. With the addition of 7 cfm of ambient air, the maximum log reduction for TV was 3.5 log PFU/g after 120s of treatment. MNV was significantly reduced by 0.5 log PFU/g compare to the control at 15s, and further treatment of MNV with ambient air brought the log reduction to greater than 5 log PFU/g at 90 s of treatment (Fig. 3). These results demonstrate that CP viral inactivation does not rely on thermal inactivation, and is therefore nonthermal in nature. With further optimization, CP may be used by food processors as a means of nonthermal inactivation of foodborne viruses.


Assuntos
Mirtilos Azuis (Planta)/virologia , Caliciviridae/fisiologia , Norovirus/fisiologia , Gases em Plasma , Temperatura , Inativação de Vírus , Animais , Microbiologia de Alimentos , Inocuidade dos Alimentos/métodos , Humanos , Camundongos , Ensaio de Placa Viral
2.
Food Microbiol ; 46: 479-484, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475318

RESUMO

Cold plasma (CP) is a novel nonthermal technology, potentially useful in food processing settings. Berries were treated with atmospheric CP for 0, 15, 30, 45, 60, 90, or 120 s at a working distance of 7.5 cm with a mixture of 4 cubic feet/minute (cfm) of CP jet and 7 cfm of ambient air. Blueberries were sampled for total aerobic plate count (APC) and yeast/molds immediately after treatment and at 1, 2, and 7 days. Blueberries were also analyzed for compression firmness, surface color, and total anthocyanins immediately after each treatment. All treatments with CP significantly (P < 0.05) reduced APC after exposure, with reductions ranging from 0.8 to 1.6 log CFU/g and 1.5 to 2.0 log CFU/g compared to the control after 1 and 7 days, respectively. Treatments longer than 60s resulted in significant reductions in firmness, although it was demonstrated that collisions between the berries and the container contributed significantly to softening. A significant reduction in anthocyanins was observed after 90 s. The surface color measurements were significantly impacted after 120 s for the L* and a* values and 45 s for the b* values. CP can inactivate microorganisms on blueberries and could be optimized to improve the safety and quality of produce.


Assuntos
Mirtilos Azuis (Planta)/microbiologia , Conservação de Alimentos/métodos , Fungos/efeitos dos fármacos , Gases em Plasma/farmacologia , Mirtilos Azuis (Planta)/química , Mirtilos Azuis (Planta)/efeitos dos fármacos , Conservação de Alimentos/instrumentação , Frutas/química , Frutas/microbiologia , Fungos/crescimento & desenvolvimento , Controle de Qualidade
3.
Foodborne Pathog Dis ; 11(3): 215-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24328454

RESUMO

An exploratory study was performed to determine the influence of fast pyrolysis (FP) and slow pyrolysis (SP) biochars on enterohemorrhagic Escherichia coli O157:H7 (EHEC) in soil. Soil + EHEC (inoculated at 7 log colony-forming units [CFU]/g of soil) + 1 of 12 types of biochar (10% total weight:weight in soil) was stored at 22°C and sampled for 8 weeks. FP switchgrass and FP horse litter biochars inactivated 2.8 and 2.1 log CFU/g more EHEC than no-biochar soils by day 14. EHEC was undetectable by surface plating at weeks 4 and 5 in standard FP switchgrass, FP oak, and FP switchgrass pellet biochars. Conversely, EHEC populations in no-biochar control samples remained as high as 5.8 and 4.0 log CFU/g at weeks 4 and 5, respectively. Additionally, three more SP hardwood pellet biochars (generated at 500°C for 1 h, or 2 h, or generated at 700°C for 30 min) inactivated greater numbers of EHEC than did the no-biochar control samples during weeks 4 and 5. These results suggest that biochar can inactivate E. coli O157:H7 in cultivable soil, which might mitigate risks associated with EHEC contamination on fresh produce.


Assuntos
Carvão Vegetal/farmacologia , Escherichia coli O157/efeitos dos fármacos , Microbiologia do Solo , Animais , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/isolamento & purificação , Cavalos , Humanos , Panicum , Quercus , Solo , Temperatura , Madeira
4.
J Food Prot ; 87(7): 100296, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734411

RESUMO

Chlorine is commonly used by the fresh produce industry to sanitize water and minimize pathogen cross-contamination during handling. The pH of chlorinated water is often reduced to values of pH 6-7, most commonly with citric acid to stabilize the active antimicrobial, hypochlorous acid (a form of free chlorine). Previous studies have demonstrated that citric acid reacts with chlorine to form trichloromethane, a major chlorine by-product in water and a potential human carcinogen. However, it is unclear if other pH control agents could be used in the place of citric acid to minimize the formation of trichloromethane. The objective of the present study was to determine the reactivity of organic and inorganic pH control agents, with chlorine, to generate trichloromethane. Free chlorine (∼100 mg/L) was mixed with 10 mM of each of twelve organic acids and two inorganic pH control agents (i.e., sodium acid sulfate and phosphoric acid) to effect a pH level of 6.5. Free chlorine and trichloromethane levels were measured over 3 h at 3 and 22°C. Results demonstrated that ascorbic acid, dehydroascorbic acid, citric acid, and malic acid rapidly depleted free chlorine concentrations at both 22°C and 3°C, while tartaric acid and lactic acid decreased chlorine concentrations more slowly. Other pH control agents did not significantly reduce free chlorine either at 22 or 3°C. Citric acid led to the generation of significantly higher concentrations of trichloromethane than did other acids. Chloroacetone was also found in chlorinated water in the presence of citric acid and ascorbic acid. Taking buffering capacity and pKa values into account, phosphoric acid and some organic acids may be used to replace citric acid as pH control agents in chlorinated water for washing fresh produce, to stabilize free chlorine level and reduce the generation of trichloromethane.


Assuntos
Cloro , Concentração de Íons de Hidrogênio , Humanos , Halogenação , Desinfetantes
5.
J Food Prot ; 87(3): 100210, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158047

RESUMO

Antimicrobial properties of biochar have been attributed to its ability to inactivate foodborne pathogens in soil, to varying degrees. High concentrations of biochar have reduced E. coli O157:H7 in soil and dairy manure compost, based on alkaline pH. Preliminary studies evaluating 31 different biochars determined that two slow pyrolysis biochars (paper biochar and walnut hull cyclone biochar) were the most effective at inactivating E. coli in soil. A study was conducted to determine the lowest percentages of paper and walnut hull cyclone biochars needed to reduce E. coli O157:H7 in soil. A model soil was adjusted to 17.75% moisture, and the two types of biochar were added at concentrations of 1.0, 1.5, 2.0, 2.5, 3.5, 4.5, 5.5, and 6.5%. Nontoxigenic E. coli O157:H7 were inoculated into soil at 6.84 log CFU/g and stored for up to 6 weeks at 21°C. Mean E. coli O157:H7 counts were 6.01-6.86 log CFU/g at all weeks between 1 and 6 in soil-only positive control samples. Populations in all soil amended with 1.0 and 1.5% of either type of biochar (as well as 2.0% of the walnut hull biochar) resulted in ≤0.68 log reductions at week 6, when compared with positive controls. All other concentrations (i.e., ≥2.0% paper and ≥2.5% walnut hull) inactivated ≥2.7 log at all weeks between 1 and 6 (p < 0.05). At the end of 6 weeks, E. coli O157:H7 declined by 2.84 log in 2.0% paper biochar samples, while concentrations of between 2.5 and 6.5% paper biochar completely inactivated E. coli O157:H7, as determined by spiral plating, at weeks 5 and 6. In contrast, 2.0% walnut hull biochar lowered populations by only 0.38 log at week 6, although 2.5-6.5% concentrations of walnut hull biochar resulted in complete inactivation at all weeks between 3 and 6, as assessed by spiral plating. In summary, ≥2.5% paper or walnut hull biochar reduced ≥5.0 log of E. coli O157:H7 during the 6-week storage period, which we attribute to high soil alkalinity. Amended at a 2.5% concentration, the pH of soil with paper or walnut hull biochar was 10.67 and 10.06, respectively. Results from this study may assist growers in the use of alkaline biochar for inactivating E. coli O157:H7 in soil.


Assuntos
Carvão Vegetal , Tempestades Ciclônicas , Escherichia coli O157 , Juglans , Solo , Pirólise , Contagem de Colônia Microbiana , Microbiologia de Alimentos
6.
J Food Prot ; 87(7): 100297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734414

RESUMO

Salmonella is capable of surviving dehydration within various foods, such as dried fruit. Dried fruit, including apple slices, have been the subject of product recalls due to contamination with Salmonella. A study was conducted to determine the fate of Salmonella on apple slices, following immersion in three antimicrobial solutions (viz., ε-polylysine [epsilon-polylysine or EP], sodium bisulfate [SBS], or peracetic acid [PAA]), and subsequent hot air dehydration. Gala apples were aseptically cored and sliced into 0.4 cm thick rings, bisected, and inoculated with a five-strain composite of desiccation-resistant Salmonella, to a population of 8.28 log CFU/slice. Slices were then immersed for 2 min in various concentrations of antimicrobial solutions, including EP (0.005, 0.02, 0.05, and 0.1%), SBS (0.05, 0.1, 0.2, and 0.3%), PAA (18 or 42 ppm), or varying concentrations of PAA + EP, and then dehydrated at 60°C for 5 h. Salmonella populations in positive control samples (inoculated apple slices washed in sterile water) declined by 2.64 log after drying. In the present study, the inactivation of Salmonella, following EP and SBS treatments, increased with increasing concentrations, with maximum reductions of 3.87 and 6.20 log (with 0.1 and 0.3% of the two compounds, respectively). Based on preliminary studies, EP concentrations greater than 0.1% did not result in lower populations of Salmonella. Pretreatment washes with either 18 or 42 ppm of PAA inactivated Salmonella populations by 4.62 and 5.63 log, respectively, following desiccation. Combining PAA with up to 0.1% EP induced no greater population reductions of Salmonella than washing with PAA alone. The addition of EP to PAA solutions appeared to destabilize PAA concentrations, reducing its biocidal efficacy. These results may provide antimicrobial predrying treatment alternatives to promote the reduction of Salmonella during commercial or consumer hot air drying of apple slices.


Assuntos
Contagem de Colônia Microbiana , Microbiologia de Alimentos , Malus , Ácido Peracético , Polilisina , Salmonella , Malus/microbiologia , Ácido Peracético/farmacologia , Salmonella/efeitos dos fármacos , Polilisina/farmacologia , Humanos , Sulfatos/farmacologia , Conservação de Alimentos/métodos , Relação Dose-Resposta a Droga , Dessecação , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Qualidade de Produtos para o Consumidor
7.
Appl Environ Microbiol ; 79(6): 1813-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315740

RESUMO

A study was conducted to determine the influence of arbuscular mycorrhizal (AM) fungi on Salmonella and enterohemorrhagic Escherichia coli O157:H7 (EHEC) in autoclaved soil and translocation into leek plants. Six-week-old leek plants (with [Myc+] or without [Myc-] AM fungi) were inoculated with composite suspensions of Salmonella or EHEC at ca. 8.2 log CFU/plant into soil. Soil, root, and shoot samples were analyzed for pathogens on days 1, 8, 15, and 22 postinoculation. Initial populations (day 1) were ca. 3.1 and 2.1 log CFU/root, ca. 2.0 and 1.5 log CFU/shoot, and ca. 5.5 and 5.1 CFU/g of soil for Salmonella and EHEC, respectively. Enrichments indicated that at days 8 and 22, only 31% of root samples were positive for EHEC, versus 73% positive for Salmonella. The mean Salmonella level in soil was 3.4 log CFU/g at day 22, while EHEC populations dropped to ≤ 0.75 log CFU/g by day 15. Overall, Salmonella survived in a greater number of shoot, root, and soil samples, compared with the survival of EHEC. EHEC was not present in Myc- shoots after day 8 (0/16 samples positive); however, EHEC persisted in higher numbers (P = 0.05) in Myc+ shoots (4/16 positive) at days 15 and 22. Salmonella, likewise, survived in statistically higher numbers of Myc+ shoot samples (8/8) at day 8, compared with survival in Myc- shoots (i.e., only 4/8). These results suggest that AM fungi may potentially enhance the survival of E. coli O157:H7 and Salmonella in the stems of growing leek plants.


Assuntos
Escherichia coli O157/fisiologia , Glomeromycota/fisiologia , Interações Microbianas , Viabilidade Microbiana , Cebolas/microbiologia , Salmonella/fisiologia , Microbiologia do Solo , Contagem de Colônia Microbiana , Escherichia coli O157/isolamento & purificação , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Salmonella/isolamento & purificação , Fatores de Tempo
8.
Foodborne Pathog Dis ; 10(6): 492-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23763579

RESUMO

The goal of this study was to determine the inactivation kinetics of Salmonella in commercial 10% salted liquid whole egg (LWE) to assist the U.S. Department of Agriculture in writing new liquid egg pasteurization guidelines. Current data are not sufficient for predicting thermal inactivation kinetics of Salmonella spp. for use in updating pasteurization guidelines for many types of liquid egg products, including salted LWE (SLWE). This is, in part, due to variations in Salmonella strains and changes in the processing of liquid egg products that have arisen in the past 40 years. Pasteurization guidelines are currently being reevaluated in light of recent risk assessments. Heat-resistant Salmonella serovars Enteritidis and Oranienburg were composited and mixed into 10% SLWE, resulting in final populations of approximately 5.7-7.8 log colony-forming units (CFU)/mL. Inoculated egg was injected into glass capillary tubes, flame-sealed, and heated in a water bath at 60, 62.2, 63.3, 64.3, or 66°C. Contents were surface-plated and incubated at 37°C for 24 h. Survival curves were not log-linear (log levels versus time), but decreased rapidly, and after initial periods became linear. Asymptotic decimal reduction values at each temperature were calculated from survivor curves with a minimum inactivation of 5.0 log CFU/mL. The asymptotic thermal D-values for SLWE were 3.47, 2.23, 1.79, 1.46, and 1.04 min at 60, 62.2, 63.3, 64.3, or 66°C, respectively. The calculated thermal z-value was 11.5°C. A model that predicts lethality for given times and temperatures that was developed predicted that the current pasteurization requirements for 10% SLWE (i.e., 63.3°C for 3.5 min, or 62.2°C for 6.2 min) are not sufficient to inactivate 7 log CFU/mL of Salmonella and only achieve approximately 4 log CFU/mL inactivation. This model will assist egg-products manufacturers and regulatory agencies in designing pasteurization processes to ensure product safety.


Assuntos
Ovos/microbiologia , Alimentos em Conserva/microbiologia , Modelos Biológicos , Salmonella/crescimento & desenvolvimento , Fenômenos Químicos , Contagem de Colônia Microbiana , Ovos/análise , Manipulação de Alimentos , Alimentos em Conserva/análise , Guias como Assunto , Temperatura Alta , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Pasteurização/normas , Controle de Qualidade , Salmonella/imunologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/isolamento & purificação , Cloreto de Sódio na Dieta/análise , Especificidade da Espécie , Fatores de Tempo , Estados Unidos , United States Department of Agriculture
9.
J Food Prot ; 86(6): 100100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150354

RESUMO

Fresh-cut apples, being rich in antioxidants and other nutrients, have emerged as popular snacks in restaurants, at home, and in school lunch programs, partially due to freshness, convenience, and portion size availability. Two major challenges in processing fresh-cut apples are the browning of cut surfaces and contamination with human pathogens. Regarding human pathogens, contamination by Listeria monocytogenes is a major concern, as evidenced by two outbreaks of whole apples and numerous recalls of fresh-cut apples. Antibrowning agents currently used by the industry have little to no antimicrobial properties. The present review discusses the possible origins of L. monocytogenes in fresh-cut apples, including contaminated whole apples, and contamination via the processing environment and the equipment in fresh-cut facilities. Treatment with antibrowning solutions could possibly be an opportunity for Listeria contamination and represents the last chance to inactivate pathogens. The discussion is focused on the antibrowning treatments where formulations and coatings with antibrowning and antimicrobial properties have been developed and evaluated against Listeria and other microorganisms. In addition, several research needs and considerations are discussed to further reduce the chance of pathogen contamination on fresh-cut apples.


Assuntos
Anti-Infecciosos , Listeria monocytogenes , Listeria , Malus , Humanos , Frutas , Microbiologia de Alimentos
10.
Appl Environ Microbiol ; 78(15): 5320-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635990

RESUMO

Human norovirus (NoV) is the leading cause of nonbacterial acute gastroenteritis epidemics worldwide. High-pressure processing (HPP) has been considered a promising nonthermal processing technology to inactivate food- and waterborne viral pathogens. Due to the lack of an effective cell culture method for human NoV, the effectiveness of HPP in inactivating human NoV remains poorly understood. In this study, we evaluated the effectiveness of HPP in disrupting the capsid of human NoV based on the structural and functional integrity of virus-like particles (VLPs) and histo-blood group antigen (HBGA) receptor binding assays. We found that pressurization at 500 to 600 MPa for 2 min, a pressure level that completely inactivates murine norovirus and feline calicivirus, was not sufficient to disrupt the structure and function of human NoV VLPs, even with a holding time of 60 min. Degradation of VLPs increased commensurate with increasing pressure levels more than increasing time. The times required for complete disruption of human NoV VLPs at 700, 800, and 900 MPa were 45, 15, and 2 min, respectively. Human NoV VLPs were more resistant to HPP in their ability to bind type A than type B and O HBGAs. Additionally, the 23-nm VLPs appeared to be much more stable than the 38-nm VLPs. Taken together, our results demonstrated that the human NoV capsid is highly resistant to HPP. While human NoV VLPs may not be fully representative of viable human NoV, destruction of the VLP capsid is highly suggestive of a typical response for viable human NoV.


Assuntos
Capsídeo/fisiologia , Inocuidade dos Alimentos/métodos , Norovirus/fisiologia , Pressão , Vírion/fisiologia , Inativação de Vírus , Western Blotting , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia Eletrônica de Transmissão , Fatores de Tempo , Vírion/ultraestrutura
11.
J Food Prot ; 85(9): 1300-1319, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588157

RESUMO

ABSTRACT: Consumer safety concerns over established fresh produce washing methods and the demand for organic and clean-label food has led to the exploration of novel methods of produce sanitization. Essential oils (EOs), which are extracted from plants, have potential as clean-label sanitizers because they are naturally derived and act as antimicrobials and antioxidants. In this review, the antimicrobial effects of EOs are explored individually and in combination, as emulsions, combined with existing chemical and physical preservation methods, incorporated into films and coatings, and in vapor phase. We examined combinations of EOs with one another, with EO components, with surfactants, and with other preservatives or preservation methods to increase sanitizing efficacy. Components of major EOs were identified, and the chemical mechanisms, potential for antibacterial resistance, and effects on organoleptic properties were examined. Studies have revealed that EOs can be equivalent or better sanitizing agents than chlorine; nevertheless, concentrations must be kept low to avoid adverse sensory effects. For this reason, future studies should address the maximum permissible EO concentrations that do not negatively affect organoleptic properties. This review should be beneficial to food scientists or industry personnel interested in the use of EOs for sanitization and preservation of foods, including fresh produce.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Anti-Infecciosos/farmacologia , Emulsões , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
12.
J Food Prot ; 85(5): 773-777, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085398

RESUMO

ABSTRACT: A study was conducted to evaluate a new organic mixed peroxyacid solution produce wash composed of a combination of organic acids (lactic acid and one or more fruit acids) and hydrogen peroxide for activity against foodborne pathogens. The mixed peroxyacid was challenged against Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in suspension or on the surface of dip-inoculated cherry tomatoes. Cherry tomatoes were also treated with 8 ppm of free chlorine in the form of sodium hypochlorite. When tested against planktonic cells of Salmonella and E. coli O157:H7 in pure culture for 120 s, these pathogens were reduced by 7.5 and 7.1 log CFU/mL, respectively, by the 0.40% peroxyacid solution, and L. monocytogenes was decreased by 5.0 log CFU/mL by the 0.80% solution. When cherry tomatoes were dip inoculated and treated with 8 ppm of free chlorine, Salmonella and E. coli O157:H7 populations decreased by 2.5 and 2.6 log CFU/g, respectively; these reductions were not significantly different from those obtained after sterile water rinses. However, the 1.0% peroxyacid solution reduced the same microorganisms by 3.8 and 3.4 log CFU/g, respectively, which was significantly greater (P < 0.05) than the reductions achieved by the 2-min sterile water rinse. For tomatoes dip inoculated with L. monocytogenes, populations were reduced by 3.5 log CFU/g by the 1.0% peroxyacid solution, which was significantly greater (P < 0.05) than reductions achieved by 8 ppm of free chlorine (2.6 log CFU/g) or sterile water (1.7 log CFU/g). These results indicate that this peroxyacid combination is an effective organic antimicrobial agent for preventing cross-contamination during the washing of cherry tomatoes and can inactivate S. enterica, E. coli O157:H7, and L. monocytogenes by up to 3.8, 3.4, and 3.5 log CFU/g, respectively.


Assuntos
Desinfetantes , Escherichia coli O157 , Listeria monocytogenes , Solanum lycopersicum , Cloro/farmacologia , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Microbiologia de Alimentos , Salmonella , Água
13.
Front Cell Infect Microbiol ; 12: 888568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770066

RESUMO

A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Infecção Laboratorial , Antibacterianos/farmacologia , Escherichia coli O157/genética , Humanos , Análise de Sequência , Toxina Shiga II/genética
14.
Appl Environ Microbiol ; 77(5): 1833-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239552

RESUMO

Cronobacter spp. (formerly Enterobacter sakazakii) and Salmonella spp. are increasingly implicated internationally as important microbiological contaminants in low-moisture food products, including powdered infant formula. Estimates indicate that 40 to 80% of infants infected with Cronobacter sakazakii and/or Salmonella in the United States may not survive the illness. A systematic approach, combining literature-based data mining, comparative genome analysis, and the direct sequencing of PCR products of specific biomarker genes, was used to construct an initial collection of genes to be targeted. These targeted genes, particularly genes encoding virulence factors and genes responsible for unique phenotypes, have the potential to function as biomarker genes for the identification and differentiation of Cronobacter spp. and Salmonella from other food-borne pathogens in low-moisture food products. In this paper, a total of 58 unique Salmonella gene clusters and 126 unique potential Cronobacter biomarkers and putative virulence factors were identified. A chitinase gene, a well-studied virulence factor in fungi, plants, and bacteria, was used to confirm this approach. We found that the chitinase gene has very low sequence variability and/or polymorphism among Cronobacter, Citrobacter, and Salmonella, while differing significantly in other food-borne pathogens, either by sequence blasting or experimental testing, including PCR amplification and direct sequencing. This computational analysis for Cronobacter and Salmonella biomarker identification and the preliminary laboratory studies are only a starting point; thus, PCR and array-based biomarker verification studies of these and other food-borne pathogens are currently being conducted.


Assuntos
Técnicas Bacteriológicas/métodos , Biomarcadores , Cronobacter sakazakii/classificação , Cronobacter sakazakii/isolamento & purificação , Microbiologia de Alimentos , Salmonella/classificação , Salmonella/isolamento & purificação , Biologia Computacional , Cronobacter sakazakii/genética , Genes Bacterianos , Humanos , Reação em Cadeia da Polimerase , Salmonella/genética , Análise de Sequência , Estados Unidos , Fatores de Virulência/genética
15.
Food Microbiol ; 28(1): 67-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21056777

RESUMO

The goal of this study was to develop a general model of inactivation of salmonellae in commercial liquid egg yolk for temperatures ranging from 58°C to 66°C by studying the inactivation kinetics of Salmonella in liquid egg yolk. Heat-resistant salmonellae (three serovars of Enteritidis [two of phage type 8 and one PT 13] and one Oranienburg) were grown to stationary phase in Tryptic Soy Broth and concentrated 10-fold by centrifugation. Each inoculum was added to liquid egg yolk and mixed thoroughly, resulting in a final population of ca. 7 log CFU/ml egg yolk. Inoculated yolk was injected into sterile glass capillary tubes, flame-sealed and heated in a water bath at 58, 60, 62, 64, and 66°C. Capillary tubes were ethanol sanitized, rinsed, and contents were extracted. Yolk was diluted, surface plated onto Tryptic Soy Agar+0.1% sodium pyruvate and 50 µg/ml nalidixic acid and incubated at 37°C for 24 h before colonies were enumerated. Decimal reduction values were calculated from survivor curves with a minimum inactivation of 6 log CFU/ml at each temperature. Survival curves (except for 66°C) featured initial lag periods before first order linear inactivation. Estimated asymptotic D-values were 1.83 min at 58°C, 0.69 min at 60°C, 0.26 min at 62°C, 0.096 min at 64°C and 0.036 min at 66°C. The estimate of the asymptotic z-value was ca. 4.7°C with standard error of 0.07°C. A linear relationship between the log(10) of the lag times and temperature was observed. A general kinetic model of inactivation was developed. The results of the study provide information that can be used by processors to aid in producing safe pasteurized egg yolk products and for satisfying pasteurization performance standards and developing industry guidance.


Assuntos
Gema de Ovo/microbiologia , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Viabilidade Microbiana , Salmonella/metabolismo , Contagem de Colônia Microbiana , Temperatura Alta , Cinética , Modelos Teóricos , Intoxicação Alimentar por Salmonella/prevenção & controle
16.
J Food Prot ; 84(3): 490-496, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125042

RESUMO

ABSTRACT: Mesquite flour with endogenous high sugar content is often contaminated with Bacillus cereus. The purpose of the present study was to evaluate the thermal resistance of Bacillus spp. in naturally contaminated mesquite flour. Flours with and without adjusted water activity (aw) were treated at various temperatures (100 to 140°C) and times (up to 2 h). Total mesophilic bacteria and Bacillus spp. were enumerated using tryptic soy agar and Brilliance Bacillus cereus Agar, respectively. Results revealed that naturally contaminated Bacillus spp. and other mesophilic bacteria in mesquite flour (aw = 0.34) were highly resistant to heat. To reduce the initial populations (4.75 log CFU/g) of Bacillus spp. to nondetectable levels (<1.18 log CFU/g), thermal treatments of 120°C for 2 h were required. D100°C-values for total mesophilic bacteria were 5.6-fold higher than those of Bacillus spp. With increasing treatment temperature, the difference in D-value between total mesophilic bacteria and Bacillus spp. became smaller. When the aw of flour was adjusted from 0.34 to 0.71, the D-values for Bacillus decreased significantly. Treatment at 100°C for 1 h reduced Bacillus spp. populations to nondetectable levels. Our results demonstrate that naturally present Bacillus spp. in flour are highly resistant to heat, whereas increasing the aw increased their heat sensitivity. The high thermal resistance of microbes in mesquite flour warrants further investigations.


Assuntos
Bacillus , Prosopis , Contagem de Colônia Microbiana , Farinha/análise , Microbiologia de Alimentos , Temperatura Alta , Esporos Bacterianos/química , Água/análise
17.
J Food Prot ; 83(4): 637-643, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32221569

RESUMO

ABSTRACT: Contamination of fresh produce with the foodborne pathogens Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 continues to be problematic, resulting in outbreaks of foodborne illness and costly corporate recalls. Various individual concentrations of citric or lactic acids (0.35 to 0.61%) or isopropyl citrate (0.16 to 0.54%) combined with two generally recognized as safe surfactants, 0.025% sodium-2-ethyl-hexyl sulfate and 0.025% sodium dodecylbenzene-sulfonate, were tested against these three pathogens in suspension and when inoculated and dried on the surface of grape tomatoes. The efficacy of sodium hypochlorite (NaClO; at 46 ppm) was also evaluated under dirty and clean conditions in suspension after addition of 0.3 or 0.03% bovine serum albumin, respectively, as an organic load. NaClO (46 ppm) inactivated the three pathogens in suspension by <0.76 log CFU/mL after 5 min in the presence of 0.3% bovine serum albumin, whereas 9 and 15 ppm of free chlorine inactivated the pathogens by 0.64 and 2.77 log CFU/mL, respectively, after 5 min under clean conditions. Isopropyl citrate (0.16% acidulant) plus 0.05% total concentration of the two surfactants inactivated the pathogens in suspension by up to 7.0 log CFU/mL within 2 min. When applied to grape tomatoes for 2 min, 0.54% isopropyl citrate plus 0.025% concentrations of each of the two surfactants reduced Salmonella, E. coli O157:H7, and L. monocytogenes by as much as ca. 5.47, 4.89, and 4.19 log CFU/g, respectively. These reductions were significantly greater than those achieved with 49 ppm of free chlorine. Citric acid and lactic acid plus surfactant washes achieved greater inactivation than water-only washes, reducing Salmonella, E. coli O157:H7, and L. monocytogenes on tomatoes by up to 4.90, 4.37, and 3.98 log CFU/g, respectively. These results suggest that these combinations of acidulants and surfactants may be an effective tool for preventing cross-contamination during the washing of grape tomatoes, for reducing pathogens on the fruit itself, and as an alternative to chlorine for washing fresh produce.


Assuntos
Desinfetantes , Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Solanum lycopersicum , Aderência Bacteriana , Cloro , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Microbiologia de Alimentos , Solanum lycopersicum/microbiologia , Tensoativos/farmacologia
18.
Int J Food Microbiol ; 312: 108387, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669763

RESUMO

Fresh produce-associated outbreaks of foodborne illnesses continue to occur every year in the U.S., suggesting limitations of current practices and the need for effective intervention technologies. Advanced oxidation process involves production of hydrogen radicals, which are the strongest oxidant. The objective of the present study was to evaluate the effectiveness of advanced oxidation process by combining gaseous ozone and aerosolized hydrogen peroxide. Grape tomatoes were inoculated with a 2-strain cocktail of Salmonella typhimurium on both stem scar and smooth surface. Gaseous ozone (800 and 1600 ppm) and aerosolized hydrogen peroxide (2.5, 5 and 10%) were separately or simultaneously introduced into a treatment chamber where the inoculated tomatoes were placed. During the 30 min treatments, hydrogen peroxide was aerosolized using an atomizer operated in two modes: continuously or 15 s on/50 s off. After the treatments, surviving Salmonella on the smooth surface and stem scar were enumerated. Results showed that ozone alone reduced Salmonella populations by <0.6 log CFU/fruit on both the smooth surface and the stem scar area, and aerosolized hydrogen peroxide alone reduced the populations by up to 2.1 log CFU/fruit on the smooth surface and 0.8 log CFU/fruit on stem scar area. However, the combination treatments reduced the populations by up to 5.2 log CFU/fruit on smooth surface and 4.2 log CFU/fruit on the stem scar. Overall, our results demonstrate that gaseous ozone and aerosolized hydrogen peroxide have synergistic effects on the reduction of Salmonella populations on tomatoes.


Assuntos
Doenças Transmitidas por Alimentos/prevenção & controle , Peróxido de Hidrogênio/farmacologia , Ozônio/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos/métodos , Frutas/microbiologia , Oxirredução
19.
J Food Prot ; 83(6): 1020-1029, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32438397

RESUMO

ABSTRACT: Soils in which fresh produce is grown can become contaminated with foodborne pathogens and are sometimes then abandoned or removed from production. The application of biochar has been proposed as a method of bioremediating such pathogen-contaminated soils. The objectives of the present study were to evaluate three fast-pyrolysis-generated biochars (FPBC; pyrolyzed in house at 450, 500, and 600°C in a newly designed pyrolysis reactor) and 10 United Kingdom Biochar Research Center (UKBRC) standard slow-pyrolysis biochars to determine their effects on the viability of four surrogate strains of Escherichia coli O157:H7 in soil. A previously validated biocidal FPBC that was aged for 2 years was also tested with E. coli to determine changes in antibacterial efficacy over time. Although neither the UKBRC slow-pyrolysis biochars or the 450 and 500°C FPBC from the new reactor were antimicrobial, the 600°C biochar was biocidal (P < 0.05); E. coli populations were significantly reduced at 3 and 3.5% biochar concentrations (reductions of 5.34 and 5.84 log CFU/g, respectively) compared with 0.0 to 2.0% biochar concentrations. The aged 500°C FPBC from the older reactor, which was previously validated as antimicrobial, lost efficacy after aging for 2 years. These results indicate that the biocidal activity of FPBC varies based on production temperature and/or age.


Assuntos
Escherichia coli O157 , Pirólise , Carvão Vegetal , Pré-Escolar , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Humanos , Solo , Temperatura , Reino Unido
20.
J Food Prot ; 83(5): 902-909, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032418

RESUMO

ABSTRACT: Dehydrated fruits, including dried coconut (Cocos nucifera) and dried apple (Malus sp.) slices, have been the subject of manufacturer recalls due to contamination with Salmonella. A study was conducted to determine the survival of Salmonella on apple slices of six apple cultivars after dehydration and also following treatment with antimicrobial solutions (0.5%, w/w) and dehydration. Samples of six apple cultivars (Envy, Gala, Red Delicious, Fuji, Pink Lady, Granny Smith) were cored and sliced into 0.4-cm rings, halved, inoculated with a five-strain composite of desiccation-resistant Salmonella, and dehydrated at 60°C for 5 h. Subsequently, Gala apple slices were treated in 0.5% solutions of one of eight antimicrobial rinses for 2 min and then dehydrated at 60°C for 5 h. Antimicrobial solutions used were potassium sorbate, sodium benzoate, ascorbic acid, propionic acid, lactic acid, citric acid, fumaric acid, and sodium bisulfate. Reduction of Salmonella populations varied according to apple cultivar. Salmonella survival on Envy, Gala, Red Delicious, Fuji, Pink Lady, and Granny Smith was 5.92, 5.58, 4.83, 4.68, 4.45, and 3.84 log CFU, respectively. There was significantly greater (P < 0.05) Salmonella inactivation on Granny Smith, Pink Lady, and Fuji apples than on Gala and Envy. Survival of Salmonella on Gala apple slices following dehydration was 5.58 log CFU for the untreated control and 4.76, 3.90, 3.29, 3.13, 2.89, 2.83, 2.64, and 0.0 log CFU for those treated with potassium sorbate, sodium benzoate, ascorbic acid, propionic acid, lactic acid, citric acid, fumaric acid, and sodium bisulfate, respectively. Pretreatment of apple slices with either fumaric acid or sodium bisulfate before dehydration led to lower Salmonella survival than pretreatment with all other antimicrobial treatments. Lower apple pH was statistically correlated (P < 0.05) with decreasing survival of Salmonella following dehydration. These results may provide methodology applicable to the food industry for increasing the inactivation of Salmonella during the dehydration of apple slices.


Assuntos
Desinfetantes/farmacologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Malus , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Dessecação , Humanos , Malus/classificação , Malus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA