Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(2): 105-117, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832029

RESUMO

ABSTRACT: Elevated circulating fibrinogen levels correlate with increased risk for both cardiovascular and venous thromboembolic diseases. In vitro studies show that formation of a highly dense fibrin matrix is a major determinant of clot structure and stability. Here, we analyzed the impact of nonpolymerizable fibrinogen on arterial and venous thrombosis as well as hemostasis in vivo using FgaEK mice that express normal levels of a fibrinogen that cannot be cleaved by thrombin. In a model of carotid artery thrombosis, FgaWT/EK and FgaEK/EK mice were protected from occlusion with 4% ferric chloride (FeCl3) challenges compared with wild-type (FgaWT/WT) mice, but this protection was lost, with injuries driven by higher concentrations of FeCl3. In contrast, fibrinogen-deficient (Fga-/-) mice showed no evidence of occlusion, even with high-concentration FeCl3 challenge. Fibrinogen-dependent platelet aggregation and intraplatelet fibrinogen content were similar in FgaWT/WT, FgaWT/EK, and FgaEK/EK mice, consistent with preserved fibrinogen-platelet interactions that support arterial thrombosis with severe challenge. In an inferior vena cava stasis model of venous thrombosis, FgaEK/EK mice had near complete protection from thrombus formation. FgaWT/EK mice also displayed reduced thrombus incidence and a significant reduction in thrombus mass relative to FgaWT/WT mice after inferior vena cava stasis, suggesting that partial expression of nonpolymerizable fibrinogen was sufficient for conferring protection. Notably, FgaWT/EK and FgaEK/EK mice had preserved hemostasis in multiple models as well as normal wound healing times after skin incision, unlike Fga-/- mice that displayed significant bleeding and delayed healing. These findings indicate that a nonpolymerizable fibrinogen variant can significantly suppress occlusive thrombosis while preserving hemostatic potential in vivo.


Assuntos
Hemostáticos , Trombose , Trombose Venosa , Animais , Camundongos , Fibrinogênio/metabolismo , Hemostasia , Trombose Venosa/genética , Trombose Venosa/metabolismo , Trombose/metabolismo , Plaquetas/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162976

RESUMO

Fibrin forms the structural scaffold of blood clots and has great potential for biomaterial applications. Creating recombinant expression systems of fibrinogen, fibrin's soluble precursor, would advance the ability to construct mutational libraries that would enable structure-function studies of fibrinogen and expand the utility of fibrin as a biomaterial. Despite these needs, recombinant fibrinogen expression systems, thus far, have relied on the time-consuming creation of stable cell lines. Here we present tests of a transient fibrinogen expression system that can rapidly generate yields of 8-12 mg/L using suspension HEK Expi293TM cells. We report results from two different plasmid systems encoding the fibrinogen cDNAs and two different transfection reagents. In addition, we describe a novel, affinity-based approach to purifying fibrinogen from complex media such as human plasma. We show that using a high-affinity peptide which mimics fibrin's knob 'A' sequence enables the purification of 50-75% of fibrinogen present in plasma. Having robust expression and purification systems of fibrinogen will enable future studies of basic fibrin(ogen) biology, while paving the way for the ubiquitous use of fibrin as a biomaterial.


Assuntos
Fibrinogênio , Trombose , Materiais Biocompatíveis , Cromatografia de Afinidade , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos
3.
J Mol Recognit ; 31(10): e2731, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29862590

RESUMO

Bent DNA, or DNA that is locally more flexible, is a recognition motif for many DNA binding proteins. These DNA conformational properties can thus influence many cellular processes, such as replication, transcription, and DNA repair. The importance of these DNA conformational properties is juxtaposed to the experimental difficulty to accurately determine small bends, locally more flexible DNA, or a combination of both (bends with increased flexibility). In essence, many current bulk methods use average quantities, such as the average end-to-end distance, to extract DNA conformational properties; they cannot access the additional information that is contained in the end-to-end distance distributions. We developed a method that exploits this additional information to determine DNA conformational parameters. The method is based on matching end-to-end distance distributions obtained experimentally by atomic force microscopy imaging to distributions obtained from simulations. We applied this method to investigate cisplatin GG biadducts. We found that cisplatin induces a bend angle of 36° and softens the DNA locally around the bend.


Assuntos
Cisplatino/farmacologia , DNA/química , Microscopia de Força Atômica/métodos , Proteínas de Ligação a DNA , Conformação de Ácido Nucleico/efeitos dos fármacos
4.
Biophys J ; 110(6): 1400-10, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028649

RESUMO

The major structural component of a blood clot is a mesh of fibrin fibers. Our goal was to determine whether fibrinogen glycation and fibrin fiber diameter have an effect on the mechanical properties of single fibrin fibers. We used a combined atomic force microscopy/fluorescence microscopy technique to determine the mechanical properties of individual fibrin fibers formed from blood plasma. Blood samples were taken from uncontrolled diabetic patients as well as age-, gender-, and body-mass-index-matched healthy individuals. The patients then underwent treatment to control blood glucose levels before end blood samples were taken. The fibrinogen glycation of the diabetic patients was reduced from 8.8 to 5.0 mol glucose/mol fibrinogen, and the healthy individuals had a mean fibrinogen glycation of 4.0 mol glucose/mol fibrinogen. We found that fibrinogen glycation had no significant systematic effect on single-fiber modulus, extensibility, or stress relaxation times. However, we did find that the fiber modulus, Y, strongly decreases with increasing fiber diameter, D, as Y∝D(-1.6). Thin fibers can be 100 times stiffer than thick fibers. This is unusual because the modulus is a material constant and should not depend on the sample dimensions (diameter) for homogeneous materials. Our finding, therefore, implies that fibrin fibers do not have a homogeneous cross section of uniformly connected protofibrils, as is commonly thought. Instead, the density of protofibril connections, ρPb, strongly decreases with increasing diameter, as ρPb∝D(-1.6). Thin fibers are denser and/or have more strongly connected protofibrils than thick fibers. This implies that it is easier to dissolve clots that consist of fewer thick fibers than those that consist of many thin fibers, which is consistent with experimental and clinical observations.


Assuntos
Fibrina/química , Fibrinogênio/química , Adulto , Idoso , Fenômenos Biomecânicos , Cristalografia por Raios X , Módulo de Elasticidade , Feminino , Glicosilação , Humanos , Pessoa de Meia-Idade , Substâncias Viscoelásticas
5.
Biochim Biophys Acta ; 1853(2): 338-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450979

RESUMO

As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138⁻ myeloma cells, but not CD138⁺ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138⁻ myeloma subpopulation compared with that in CD138⁺ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138⁻ myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138⁻ myeloma cell-directed cross-talk with BMSCs and reveal that CD138⁻ myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Sindecana-1/metabolismo , Fenômenos Biomecânicos , Ativação Enzimática/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/patologia , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Anal Bioanal Chem ; 407(6): 1527-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25579462

RESUMO

Next-generation sequencing (NGS) machines can sequence millions of DNA strands in a single run, such as oligonucleotide (oligo) libraries comprising millions to trillions of discrete oligo sequences. Capillary electrophoresis is an attractive technique to select tight binding oligos or "aptamers" because it requires minimal sample volumes (e.g., 100 nL) and offers a solution-phase selection environment through which enrichment of target-binding oligos can be determined quantitatively. We describe here experiments using capillary transient isotachophoresis (ctITP)-based nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) as a method for selecting aptamers from a randomized library containing a known (29mer) thrombin-binding aptamer. Our capillary electrophoresis (CE)-selected samples were sequenced by the Ion Torrent Personal Genome Machine (PGM) and analyzed for selection efficiency. We show that a single round of CE selection can enrich a randomer synthetic DNA oligo mixture for thrombin-binding activity from 0.4% aptamer content before selection to >15% aptamer content.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese Capilar/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
J Mech Behav Biomed Mater ; 155: 106564, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749267

RESUMO

Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 µm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm. The hydrated PCL fibers had an extensibility (breaking strain), εmax, of 137%. The Young's modulus, E, and tensile strength, σT, showed a strong dependence on fiber diameter, D; decreasing steeply with increasing diameter, following empirical equations E(D)=(4.3∙103∙e-D51nm+1.1∙102) MPa and σT(D)=(2.6∙103∙e-D55nm+0.6∙102) MPa. Incremental stress-strain measurements were employed to investigate the viscoelastic behavior of these fibers. The fibers exhibited stress relaxation with a fast and slow relaxation time of 3.7 ± 1.2 s and 23 ± 8 s and these experiments also allowed the determination of the elastic and viscous moduli. Cyclic stress-strain curves were used to determine that the elastic limit of the fibers, εelastic, is between 19% and 36%. These curves were also used to determine that these fibers showed small energy losses (<20%) at small strains (ε < 10%), and over 50% energy loss at large strains (ε > 50%), asymptotically approaching 61%, as Eloss=61%·(1-e-0.04*ε). Our work is the first mechanical characterization of hydrated electrospun PCL nanofibers; all previous experiments were performed on dry PCL fibers, to which we will compare our data.


Assuntos
Teste de Materiais , Nanofibras , Poliésteres , Estresse Mecânico , Água , Poliésteres/química , Nanofibras/química , Água/química , Fenômenos Mecânicos , Resistência à Tração , Módulo de Elasticidade , Viscosidade , Materiais Biocompatíveis/química
8.
Nanomaterials (Basel) ; 13(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110944

RESUMO

Electrospinning is a process to produce versatile nanoscale fibers. In this process, synthetic and natural polymers can be combined to produce novel, blended materials with a range of physical, chemical, and biological properties. We electrospun biocompatible, blended fibrinogen:polycaprolactone (PCL) nanofibers with diameters ranging from 40 nm to 600 nm, at 25:75 and 75:25 blend ratios and determined their mechanical properties using a combined atomic force/optical microscopy technique. Fiber extensibility (breaking strain), elastic limit, and stress relaxation times depended on blend ratios but not fiber diameter. As the fibrinogen:PCL ratio increased from 25:75 to 75:25, extensibility decreased from 120% to 63% and elastic limit decreased from a range between 18% and 40% to a range between 12% and 27%. Stiffness-related properties, including the Young's modulus, rupture stress, and the total and relaxed, elastic moduli (Kelvin model), strongly depended on fiber diameter. For diameters less than 150 nm, these stiffness-related quantities varied approximately as D-2; above 300 nm the diameter dependence leveled off. 50 nm fibers were five-ten times stiffer than 300 nm fibers. These findings indicate that fiber diameter, in addition to fiber material, critically affects nanofiber properties. Drawing on previously published data, a summary of the mechanical properties for fibrinogen:PCL nanofibers with ratios of 100:0, 75:25, 50:50, 25:75 and 0:100 is provided.

9.
Res Pract Thromb Haemost ; 7(5): 100285, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37601015

RESUMO

Background: Altered fibrin fiber structure is linked to pathologic states, including coronary heart disease, ischemic stroke, and atherosclerosis. However, several different techniques are commonly utilized for studying fibrin structures, and comparison of results obtained using different techniques can be challenging due to lack of standardization. Objectives: This study provides a path toward standardization by comparing fibrin fiber diameters for a range of physiologic fibrinogen and thrombin concentrations using multiple different complementary experimental methods. Methods: We determined fiber diameter using scanning electron microscopy (SEM), superresolution (stochastic optical reconstruction microscopy) fluorescence microscopy, and 4 commonly utilized turbidimetric approaches to determine the congruence between the results and the conditions under which each should be used. Results: We found that diameter values obtained using SEM and superresolution imaging agree within 10% for nearly all conditions tested. We also found that when a wavelength range of 500 to 800 nm was used for measurements and accounting for the wavelength dependence of the refractive index and specific refractive index increment, diameters obtained using the corrected Yeromonahos turbidimetric approach agree with SEM within 20% for most conditions. Conclusion: We performed a systematic, multitechnique survey assessing fibrin fiber diameters under a range of biochemical conditions. The similarity in the diameter values obtained using SEM and superresolution imaging suggests that drying and fixation during SEM sample preparation do not dramatically alter fiber cross-sections. Congruence, under certain conditions, between diameter values obtained using SEM, superresolution fluorescence imaging, and turbidimetry demonstrates the feasibility of a fibrin diameter standardization project.

10.
Biophys J ; 102(1): 168-75, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22225811

RESUMO

Fibrin fibers, which are ~100 nm in diameter, are the major structural component of a blood clot. The mechanical properties of single fibrin fibers determine the behavior of a blood clot and, thus, have a critical influence on heart attacks, strokes, and embolisms. Cross-linking is thought to fortify blood clots; though, the role of α-α cross-links in fibrin fiber assembly and their effect on the mechanical properties of single fibrin fibers are poorly understood. To address this knowledge gap, we used a combined fluorescence and atomic force microscope technique to determine the stiffness (modulus), extensibility, and elasticity of individual, uncross-linked, exclusively α-α cross-linked (γQ398N/Q399N/K406R fibrinogen variant), and completely cross-linked fibrin fibers. Exclusive α-α cross-linking results in 2.5× stiffer and 1.5× more elastic fibers, whereas full cross-linking results in 3.75× stiffer, 1.2× more elastic, but 1.2× less extensible fibers, as compared to uncross-linked fibers. On the basis of these results and data from the literature, we propose a model in which the α-C region plays a significant role in inter- and intralinking of fibrin molecules and protofibrils, endowing fibrin fibers with increased stiffness and elasticity.


Assuntos
Reagentes de Ligações Cruzadas/química , Fibrina/química , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Módulo de Elasticidade , Ligação Proteica , Estresse Mecânico , Resistência à Tração
11.
Biophys J ; 103(7): 1537-44, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23062346

RESUMO

We tested what to our knowledge is a new computational model for fibrin fiber mechanical behavior. The model is composed of three distinct elements: the folded fibrinogen core as seen in the crystal structure, the unstructured α-C connector, and the partially folded α-C domain. Previous studies have highlighted the importance of all three regions and how they may contribute to fibrin fiber stress-strain behavior. Yet no molecular model has been computationally tested that takes into account the individual contributions of all these regions. Constant velocity, steered molecular dynamics studies at 0.025 Å/ps were conducted on the folded fibrinogen core and the α-C domain to determine their force-displacement behavior. A wormlike chain model with a persistence length of 0.8 nm (Kuhn length = 1.6 nm) was used to model the mechanical behavior of the unfolded α-C connector. The three components were combined to calculate the total stress-strain response, which was then compared to experimental data. The results show that the three-component model successfully captures the experimentally determined stress-strain behavior of fibrin fibers. The model evinces the key contribution of the α-C domains to fibrin fiber stress-strain behavior. However, conversion of the α-helical coiled coils to ß-strands, and partial unfolding of the protein, may also contribute.


Assuntos
Fibrina/química , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Simulação de Dinâmica Molecular , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Coagulação Sanguínea , Bovinos , Elasticidade , Dobramento de Proteína , Estrutura Terciária de Proteína
12.
Biomolecules ; 12(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740932

RESUMO

Turbidimetry is an experimental technique often used to study the structure of filamentous networks. To extract structural properties such as filament diameter from turbidimetric data, simplifications to light scattering theory must be employed. In this work, we evaluate the applicability of three commonly utilized turbidimetric analysis approaches, each using slightly different simplifications. We make a specific application towards analyzing fibrin fibers, which form the structural scaffold of blood clots, but the results are generalizable. Numerical simulations were utilized to assess the applicability of each approach across a range of fiber lengths and diameters. Simulation results indicated that all three turbidimetric approaches commonly underestimate fiber diameter, and that the "Carr-Hermans" approach, utilizing wavelengths in the range of 500−800 nm, provided <10% error for the largest number of diameter/length combinations. These theoretical results were confirmed, under select conditions, via the comparison of fiber diameters extracted from experimental turbidimetric data, with diameters obtained using super-resolution microscopy.


Assuntos
Fibrina , Trombose , Simulação por Computador , Fibrina/química , Humanos , Nefelometria e Turbidimetria
13.
PLoS Biol ; 6(9): e232, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18828671

RESUMO

At many promoters, transcription is regulated by simultaneous binding of a protein to multiple sites on DNA, but the structures and dynamics of such transcription factor-mediated DNA loops are poorly understood. We directly examined in vitro loop formation mediated by Escherichia coli lactose repressor using single-molecule structural and kinetics methods. Small ( approximately 150 bp) loops form quickly and stably, even with out-of-phase operator spacings. Unexpectedly, repeated spontaneous transitions between two distinct loop structures were observed in individual protein-DNA complexes. The results imply a dynamic equilibrium between a novel loop structure with the repressor in its crystallographic "V" conformation and a second structure with a more extended linear repressor conformation that substantially lessens the DNA bending strain. The ability to switch between different loop structures may help to explain how robust transcription regulation is maintained even though the mechanical work required to form a loop may change substantially with metabolic conditions.


Assuntos
DNA/química , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Proteínas Repressoras/química , DNA/metabolismo , DNA/ultraestrutura , Óperon Lac , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Matemática , Microscopia de Força Atômica , Modelos Moleculares , Regiões Operadoras Genéticas , Regiões Promotoras Genéticas , Estrutura Quaternária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Transcrição Gênica
14.
Biochim Biophys Acta Gen Subj ; 1865(6): 129891, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689830

RESUMO

BACKGROUND: The epithelium forms a protective barrier against external biological, chemical and physical insults. So far, AFM-based, micro-mechanical measurements have only been performed on single cells and confluent cells, but not yet on cells in mature layers. METHODS: Using a combination of atomic force, fluorescence and confocal microscopy, we determined the changes in stiffness, morphology and actin distribution of human mammary epithelial cells (HMECs) as they transition from single cells to confluency to a mature layer. RESULTS: Single HMECs have a tall, round (planoconvex) morphology, have actin stress fibers at the base, have diffuse cortical actin, and have a stiffness of 1 kPa. Confluent HMECs start to become flatter, basal actin stress fibers start to disappear, and actin accumulates laterally where cells abut. Overall stiffness is still 1 kPa with two-fold higher stiffness in the abutting regions. As HMECs mature and form multilayered structures, cells on apical surfaces become flatter (apically more level), wider, and seven times stiffer (mean, 7 kPa) than single and confluent cells. The main drivers of these changes are actin filaments, as cells show strong actin accumulation in the regions where cells adjoin, and in the apical regions. CONCLUSIONS: HMECs stiffen, flatten and redistribute actin upon transiting from single cells to mature, confluent layers. GENERAL SIGNIFICANCE: Our findings advance the understanding of breast ductal morphogenesis and mechanical homeostasis.


Assuntos
Citoesqueleto de Actina/fisiologia , Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Organogênese , Células Cultivadas , Células Epiteliais/fisiologia , Feminino , Humanos , Glândulas Mamárias Humanas/fisiologia , Microscopia de Força Atômica
15.
Acta Biomater ; 136: 327-342, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606991

RESUMO

Structural mechanisms underlying the mechanical properties of fibrin fibers are elusive. We combined tensile testing of uncrosslinked fibrin polymers in vitro and in silico to explore their material properties. The experimental stress (σ) - strain (ε) curves for fibrin fibers are characterized by elastic deformations with a weaker elastic response for ε<160% due to unraveling of αC tethers and straightening of fibrin protofibrils, and a stronger response for ε>160% owing to unfolding of the coiled coils and γ nodules in fibrin monomers. Fiber rupture for strains ε>212% is due to dissociation of the knob-hole bonds and rupture of D:D interfaces. We developed the Fluctuating Bilinear Spring model to interpret the σ-ε profiles in terms of the free energy for protofibril alignment ΔG0 = 10.1-11.5 kBT, Young's moduli for protofibril alignment Yu = 1.9-3.2 MPa and stretching Ya = 5.7-9.7 MPa, strain scale ε˜≈ 12-40% for fiber rupture, and protofibril cooperativity m= 3.6-8. We applied the model to characterize the fiber strength σcr≈ 12-13 MPa, deformability εcr≈ 222%, and rupture toughness U≈ 9 MJ/m3, and to resolve thermodynamic state functions, 96.9 GJ/mol entropy change for protofibril alignment (at room temperature) and 113.6 GJ/mol enthalpy change for protofibril stretching, which add up to 210.5 GJ/mol free-energy change. Fiber elongation is associated with protofibril dehydration and sliding mechanism to create an ordered protofibril array. Fibrin fibers behave like a hydrogel; protofibril dehydration and water expulsion account for ∼94-98% of the total free-energy changes for fiber elongation and rupture. STATEMENT OF SIGNIFICANCE: Structural mechanisms underlying the mechanical properties of fibrin fibers, major components of blood clots and obstructive thrombi, are elusive. We performed tensile testing of uncrosslinked fibrin polymers in vitro and in silico to explore their material properties. Fluctuating Bilinear Spring theory was developed to interpret the stress-strain profiles in terms of the energy for protofibril alignment, elastic moduli for protofibril alignment and stretching, and strain scale for fiber rupture, and to probe the limits of fiber strength, extensibility and toughness. Fibrin fibers behave like a hydrogel. Fiber elongation is defined by the protofibril dehydration and sliding. Structural rearrangements in water matrix control fiber elasticity. These results contribute to fundamental understanding of blood clot breakage that underlies thrombotic embolization.


Assuntos
Fibrina , Trombose , Módulo de Elasticidade , Elasticidade , Humanos , Termodinâmica
16.
Biomolecules ; 11(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680169

RESUMO

Scanning Electron Microscopy (SEM) is a powerful, high-resolution imaging technique widely used to analyze the structure of fibrin networks. Currently, structural features, such as fiber diameter, length, density, and porosity, are mostly analyzed manually, which is tedious and may introduce user bias. A reliable, automated structural image analysis method would mitigate these drawbacks. We evaluated the performance of DiameterJ (an ImageJ plug-in) for analyzing fibrin fiber diameter by comparing automated DiameterJ outputs with manual diameter measurements in four SEM data sets with different imaging parameters. We also investigated correlations between biophysical fibrin clot properties and diameter, and between clot permeability and DiameterJ-determined clot porosity. Several of the 24 DiameterJ algorithms returned diameter values that highly correlated with and closely matched the values of the manual measurements. However, optimal performance was dependent on the pixel size of the images-best results were obtained for images with a pixel size of 8-10 nm (13-16 pixels/fiber). Larger or smaller pixels resulted in an over- or underestimation of diameter values, respectively. The correlation between clot permeability and DiameterJ-determined clot porosity was modest, likely because it is difficult to establish the correct image depth of field in this analysis. In conclusion, several DiameterJ algorithms (M6, M5, T3) perform well for diameter determination from SEM images, given the appropriate imaging conditions (13-16 pixels/fiber). Determining fibrin clot porosity via DiameterJ is challenging.


Assuntos
Fibrina/ultraestrutura , Hemorragia/diagnóstico por imagem , Plasma/diagnóstico por imagem , Trombose/diagnóstico , Adulto , Coagulação Sanguínea/genética , Feminino , Fibrina/química , Hemorragia/diagnóstico , Hemorragia/patologia , Humanos , Microscopia Eletrônica de Varredura , Porosidade , Gravidez , Trombose/sangue , Trombose/diagnóstico por imagem , Trombose/patologia
17.
J Mol Recognit ; 23(5): 414-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19957300

RESUMO

The lack of efficient identification and isolation methods for specific molecular binders has fundamentally limited drug discovery. Here, we have developed a method to select peptide nucleic acid (PNA) encoded molecules with specific functional properties from combinatorially generated libraries. This method consists of three essential stages: (1) creation of a Lab-on-Bead library, a one-bead, one-sequence library that, in turn, displays a library of candidate molecules, (2) fluorescence microscopy-aided identification of single target-bound beads and the extraction--wet or dry--of these beads and their attached candidate molecules by a micropipette manipulator, and (3) identification of the target-binding candidate molecules via amplification and sequencing. This novel integration of techniques harnesses the sensitivity of DNA detection methods and the multiplexed and miniaturized nature of molecule screening to efficiently select and identify target-binding molecules from large nucleic acid encoded chemical libraries. Beyond its potential to accelerate assays currently used for the discovery of new drug candidates, its simple bead-based design allows for easy screening over a variety of prepared surfaces that can extend this technique's application to the discovery of diagnostic reagents and disease markers.


Assuntos
Técnicas de Química Combinatória/métodos , Descoberta de Drogas/métodos , Ácidos Nucleicos Peptídicos/química , Sequência de Bases , Técnicas de Química Combinatória/instrumentação , Descoberta de Drogas/instrumentação , Corantes Fluorescentes/química , Biblioteca de Peptídeos
18.
J Med Ethics ; 36(10): 614-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20797979

RESUMO

A multidisciplinary faculty committee designed a curriculum to shape biomedical graduate students into researchers with a high commitment to professionalism and social responsibility and to provide students with tools to navigate complex, rapidly evolving academic and societal environments with a strong ethical commitment. The curriculum used problem-based learning (PBL), because it is active and learner-centred and focuses on skill and process development. Two courses were developed: Scientific Professionalism: Scientific Integrity addressed discipline-specific and broad professional norms and obligations for the ethical practice of science and responsible conduct of research (RCR). Scientific Professionalism: Bioethics and Social Responsibility focused on current ethical and bioethical issues within the scientific profession, and implications of research for society. Each small-group session examined case scenarios that included: (1) learning objectives for professional norms and obligations; (2) key ethical issues and philosophies within each topic area; (3) one or more of the RCR instructional areas; and (4) at least one type of moral reflection. Cases emphasised professional standards, obligations and underlying philosophies for the ethical practice of science, competing interests of stakeholders and oversight of science (internal and external). To our knowledge, this is the first use of a longitudinal, multi-semester PBL course to teach scientific integrity and professionalism. Both faculty and students endorsed the active learning approach for these topics, in contrast to a compliance-based approach that emphasises learning rules and regulations.


Assuntos
Currículo , Educação de Pós-Graduação em Medicina/métodos , Ética Médica/educação , Princípios Morais , Aprendizagem Baseada em Problemas/métodos , Prática Profissional , Temas Bioéticos , Pesquisa Biomédica/educação , Pesquisa Biomédica/ética , Humanos , Aprendizagem Baseada em Problemas/organização & administração , Prática Profissional/normas
19.
Thromb Haemost ; 120(1): 44-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31752041

RESUMO

Turbidimetry is used to characterize fibrin clot properties. In purified systems, maximum absorbance (MA) directly relates to fibrin fiber cross-sectional area. However, in plasma samples there are discrepancies in the relationships between MA and fibrinogen concentration, fiber diameter, other clot properties, and cardiovascular disease outcomes, which complicate data interpretation. This study aims to advance understanding of MA of plasma clots through testing how well it relates to fundamental dependence on fibrinogen concentration and fiber diameter as predicted by light scattering theory, other clot properties and lifestyle, and biochemical variables. Plasma samples from 30 apparently healthy individuals with a fibrinogen concentration from 2.4 to 6.4 g/L were included. We performed turbidimetry, permeability, scanning electron microscopy, and rheometry on in vitro formed plasma clots. MA correlated more strongly with fibrinogen concentration (r = 0.65; p < 0.001) than with fiber diameter (r = 0.47; p = 0.01), which combined explained only 46% of the MA variance. Of additional variables measured, only low-density lipoprotein cholesterol correlated with MA (r = 0.46; p = 0.01) and clot lysis (r = 0.62; p < 0.0001) but not with fiber diameter or fibrinogen concentration. MA correlated with clot lysis time (r = 0.59; p = 0.001), storage modulus (r = 0.61; p = 0.001), and loss modulus (r = 0.59; p = 0.001), and negatively with clot permeability (r = -0.60; p = 0.001) also after adjustment for fibrinogen concentration and fiber diameter. Increased MA is indicative of a prothrombotic clot phenotype irrespective of fibrinogen concentration. MA is more indicative of overall clot density than of fiber diameter. Other plasma components can alter internal fiber density without altering fiber diameter and should be considered when interpreting MA of plasma samples.


Assuntos
Fibrina/metabolismo , Fibrinogênio/metabolismo , Nefelometria e Turbidimetria/métodos , Trombose/diagnóstico , Idoso , Coagulação Sanguínea/efeitos dos fármacos , Feminino , Fibrina/química , Tempo de Lise do Coágulo de Fibrina , Fibrinólise , Hemostáticos/uso terapêutico , Humanos , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Nefelometria e Turbidimetria/estatística & dados numéricos , Plasma , Trombose/tratamento farmacológico
20.
Nanomaterials (Basel) ; 10(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942701

RESUMO

Electrospun nanofibers manufactured from biocompatible materials are used in numerous bioengineering applications, such as tissue engineering, creating organoids or dressings, and drug delivery. In many of these applications, the morphological and mechanical properties of the single fiber affect their function. We used a combined atomic force microscope (AFM)/optical microscope technique to determine the mechanical properties of nanofibers that were electrospun from a 50:50 fibrinogen:PCL (poly-ε-caprolactone) blend. Both of these materials are widely available and biocompatible. Fibers were spun onto a striated substrate with 6 µm wide grooves, anchored with epoxy on the ridges and pulled with the AFM probe. The fibers showed significant strain softening, as the modulus decreased from an initial value of 1700 MPa (5-10% strain) to 110 MPa (>40% strain). Despite this extreme strain softening, these fibers were very extensible, with a breaking strain of 100%. The fibers exhibited high energy loss (up to 70%) and strains larger than 5% permanently deformed the fibers. These fibers displayed the stress-strain curves of a ductile material. We provide a comparison of the mechanical properties of these blended fibers with other electrospun and natural nanofibers. This work expands a growing library of mechanically characterized, electrospun materials for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA