Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 627(8003): 289-294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448594

RESUMO

Ultraviolet spectroscopy provides unique insights into the structure of matter with applications ranging from fundamental tests to photochemistry in the Earth's atmosphere and astronomical observations from space telescopes1-8. At longer wavelengths, dual-comb spectroscopy, using two interfering laser frequency combs, has become a powerful technique capable of simultaneously providing a broad spectral range and very high resolution9. Here we demonstrate a photon-counting approach that can extend the unique advantages of this method into ultraviolet regions where nonlinear frequency conversion tends to be very inefficient. Our spectrometer, based on two frequency combs with slightly different repetition frequencies, provides a wide-span, high-resolution frequency calibration within the accuracy of an atomic clock, and overall consistency of the spectra. We demonstrate a signal-to-noise ratio at the quantum limit and an optimal use of the measurement time, provided by the multiplexed recording of all spectral data on a single photon-counter10. Our initial experiments are performed in the near-ultraviolet and in the visible spectral ranges with alkali-atom vapour, with a power per comb line as low as a femtowatt. This crucial step towards precision broadband spectroscopy at short wavelengths paves the way for extreme-ultraviolet dual-comb spectroscopy, and, more generally, opens up a new realm of applications for photon-level diagnostics, as encountered, for example, when driving single atoms or molecules.

2.
Nature ; 589(7843): 527-531, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33505036

RESUMO

The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refined over the years to include the electron spin, the relativistic and quantum field effects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused by the nuclear structure are vastly magnified in hydrogen-like systems formed by a negative muon and a nucleus, so spectroscopy of these muonic ions can be used to investigate the nuclear structure with high precision. Here we present the measurement of two 2S-2P transitions in the muonic helium-4 ion that yields a precise determination of the root-mean-square charge radius of the α particle of 1.67824(83) femtometres. This determination from atomic spectroscopy is in excellent agreement with the value from electron scattering1, but a factor of 4.8 more precise, providing a benchmark for few-nucleon theories, lattice quantum chromodynamics and electron scattering. This agreement also constrains several beyond-standard-model theories proposed to explain the proton-radius puzzle2-5, in line with recent determinations of the proton charge radius6-9, and establishes spectroscopy of light muonic atoms and ions as a precise tool for studies of nuclear properties.

3.
Proc Natl Acad Sci U S A ; 117(43): 26688-26691, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055211

RESUMO

We probe complex optical spectra at high resolution over a broad span in almost complete darkness. Using a single photon-counting detector at light power levels that are a billion times weaker than commonly employed, we observe interferences in the counting statistics with two separate mode-locked femtosecond lasers of slightly different repetition frequencies, each emitting a comb of evenly spaced spectral lines over a wide spectral span. Unique advantages of the emerging technique of dual-comb spectroscopy, such as multiplex data acquisition with many comb lines, potential very high resolution, and calibration of the frequency scale with an atomic clock, can thus be maintained for scenarios where only few detectable photons can be expected. Prospects include spectroscopy of weak scattered light over long distances, fluorescence spectroscopy of single trapped atoms or molecules, or studies in the extreme-ultraviolet or even soft-X-ray region with comb sources of low photon yield. Our approach defies intuitive interpretations in a picture of photons that exist before detection.

4.
Opt Express ; 30(5): 7340-7341, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299498

RESUMO

In Sec. 6 (polarization monitor) of our recent publication [Opt. Express29(5), 7024 (2021)10.1364/OE.417455], we assumed a small value of δ. This is however incorrect. The correct approximation for small ß leads to the updated Eqs. (10)-(11), resulting in a corrected Fig. 12.

6.
Proc Natl Acad Sci U S A ; 116(9): 3454-3459, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755528

RESUMO

Mid-infrared high-resolution spectroscopy has proven an invaluable tool for the study of the structure and dynamics of molecules in the gas phase. The advent of frequency combs advances the frontiers of precise molecular spectroscopy. Here we demonstrate, in the important 3-µm spectral region of the fundamental CH stretch in molecules, dual-comb spectroscopy with experimental coherence times between the combs that exceed half an hour. Mid-infrared Fourier transform spectroscopy using two frequency combs with self-calibration of the frequency scale, negligible contribution of the instrumental line shape to the spectral profiles, high signal-to-noise ratio, and broad spectral bandwidth opens up opportunities for precision spectroscopy of small molecules. Highly multiplexed metrology of line shapes may be envisioned.

7.
Opt Express ; 29(5): 7024-7048, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726212

RESUMO

We present an improved active fiber-based retroreflector (AFR) providing high-quality wavefront-retracing anti-parallel laser beams in the near UV. We use our improved AFR for first-order Doppler-shift suppression in precision spectroscopy of atomic hydrogen, but our setup can be adapted to other applications where wavefront-retracing beams with defined laser polarization are important. We demonstrate how weak aberrations produced by the fiber collimator may remain unobserved in the intensity of the collimated beam but limit the performance of the AFR. Our general results on characterizing these aberrations with a caustic measurement can be applied to any system where a collimated high-quality laser beam is required. Extending the collimator design process by wave optics propagation tools, we achieved a four-lens collimator for the wavelength range 380-486 nm with the beam quality factor of M2 ≃ 1.02, limited only by the not exactly Gaussian beam profile from the single-mode fiber. Furthermore, we implemented precise fiber-collimator alignment and improved the collimation control by combining a precision motor with a piezo actuator. Moreover, we stabilized the intensity of the wavefront-retracing beams and added in-situ monitoring of polarization from polarimetry of the retroreflected light.

8.
Opt Lett ; 46(16): 3957-3960, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388784

RESUMO

Time-resolved near-infrared absorption spectroscopy of single non-repeatable transient events is performed at high spectral resolution with a dual-comb interferometer using a continuous-wave laser followed by a single electro-optic amplitude modulator. By sharing high-speed electrical/optical components, our spectrometer greatly simplifies the implementation of dual-comb spectroscopy and offers a high mutual coherence time, measured up to 50 s, without any active stabilization system and/or data processing. The time resolution is as short as 100 µs in our experimental demonstration. For a span of 36 GHz, the mean signal-to-noise ratio of 80, at 100-MHz spectral resolution and 100-µs measurement time, enables precise determination of the parameters of rovibrational lines, including intensity or concentration.

9.
Nature ; 502(7471): 355-8, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24132293

RESUMO

Advances in optical spectroscopy and microscopy have had a profound impact throughout the physical, chemical and biological sciences. One example is coherent Raman spectroscopy, a versatile technique interrogating vibrational transitions in molecules. It offers high spatial resolution and three-dimensional sectioning capabilities that make it a label-free tool for the non-destructive and chemically selective probing of complex systems. Indeed, single-colour Raman bands have been imaged in biological tissue at video rates by using ultra-short-pulse lasers. However, identifying multiple, and possibly unknown, molecules requires broad spectral bandwidth and high resolution. Moderate spectral spans combined with high-speed acquisition are now within reach using multichannel detection or frequency-swept laser beams. Laser frequency combs are finding increasing use for broadband molecular linear absorption spectroscopy. Here we show, by exploring their potential for nonlinear spectroscopy, that they can be harnessed for coherent anti-Stokes Raman spectroscopy and spectro-imaging. The method uses two combs and can simultaneously measure, on the microsecond timescale, all spectral elements over a wide bandwidth and with high resolution on a single photodetector. Although the overall measurement time in our proof-of-principle experiments is limited by the waiting times between successive spectral acquisitions, this limitation can be overcome with further system development. We therefore expect that our approach of using laser frequency combs will not only enable new applications for nonlinear microscopy but also benefit other nonlinear spectroscopic techniques.


Assuntos
Lasers , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Fatores de Tempo , Vibração
10.
Opt Lett ; 43(1): 162-165, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328222

RESUMO

Sub-Doppler broadband multi-heterodyne spectroscopy is proposed and experimentally demonstrated. Using two laser frequency combs of slightly different repetition frequencies, we have recorded Doppler-free two-photon dual-comb spectra of atomic rubidium resonances of a width of 6 MHz, while simultaneously interrogating a spectral span of 10 THz. The atomic transitions are uniquely identified via the intensity modulation of the observed fluorescence radiation. To the best of our knowledge, these results represent the first demonstration of Doppler-free Fourier transform spectroscopy and extend the range of applications of broadband spectroscopy towards precision nonlinear spectroscopy.

11.
Nature ; 485(7400): 611-4, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22660320

RESUMO

The best spectrographs are limited in stability by their calibration light source. Laser frequency combs are the ideal calibrators for astronomical spectrographs. They emit a spectrum of lines that are equally spaced in frequency and that are as accurate and stable as the atomic clock relative to which the comb is stabilized. Absolute calibration provides the radial velocity of an astronomical object relative to the observer (on Earth). For the detection of Earth-mass exoplanets in Earth-like orbits around solar-type stars, or of cosmic acceleration, the observable is a tiny velocity change of less than 10 cm s(-1), where the repeatability of the calibration--the variation in stability across observations--is important. Hitherto, only laboratory systems or spectrograph calibrations of limited performance have been demonstrated. Here we report the calibration of an astronomical spectrograph with a short-term Doppler shift repeatability of 2.5 cm s(-1), and use it to monitor the star HD 75289 and recompute the orbit of its planet. This repeatability should make it possible to detect Earth-like planets in the habitable zone of star or even to measure the cosmic acceleration directly.

12.
Opt Express ; 25(17): 20502-20510, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041730

RESUMO

We demonstrate nonlinear pulse compression by multi-pass cell spectral broadening (MPCSB) from 860 fs to 115 fs with compressed pulse energy of 7.5 µJ, average power of 300 W and close to diffraction-limited beam quality. The transmission of the compression unit is >90%. The results show that this recently introduced compression scheme for peak powers above the threshold for catastrophic self-focusing can be scaled to smaller pulse energies and can achieve a larger compression factor than previously reported. Good homogeneity of the spectral broadening across the beam profile is verified, which distinguishes MPCSB among other bulk compression schemes.

13.
Opt Lett ; 42(2): 318-321, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081102

RESUMO

We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate a spectra of liquids, which span 1100 cm-1 of Raman shifts. At a resolution of 6 cm-1, their measurement time may be as short as 5 µs for a refresh rate of 2 kHz. The waiting period between acquisitions is improved 10-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

14.
Opt Express ; 24(18): 21205-15, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607722

RESUMO

We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of 500 kHz and a noise level of 1.1 × 10-13 m rms.

15.
Phys Rev Lett ; 116(4): 043002, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871326

RESUMO

We demonstrate Doppler cooling of trapped magnesium ions using a frequency comb at 280 nm obtained from a frequency tripled Ti:sapphire laser. A comb line cools on the 3s_{1/2}-3p_{3/2} transition, while the nearest blue-detuned comb line contributes negligible heating. We observe the cooling-heating transition and long-term cooling of ion chains with several sympathetically cooled ions. Spatial thermometry shows that the ion is cooled to near the Doppler limit. Doppler cooling with frequency combs has the potential to open many additional atomic species to laser cooling by reaching further into the vacuum and extreme ultraviolet via high-harmonic generation and by providing a broad bandwidth from which multiple excitation sidebands can be obtained.

16.
Nature ; 464(7292): 1170-3, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20357765

RESUMO

Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.

17.
Nature ; 466(7303): 213-6, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613837

RESUMO

The proton is the primary building block of the visible Universe, but many of its properties-such as its charge radius and its anomalous magnetic moment-are not well understood. The root-mean-square charge radius, r(p), has been determined with an accuracy of 2 per cent (at best) by electron-proton scattering experiments. The present most accurate value of r(p) (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants. This value is based mainly on precision spectroscopy of atomic hydrogen and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of r(p) as deduced from electron-proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant). An attractive means to improve the accuracy in the measurement of r(p) is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift (the energy difference between the 2S(1/2) and 2P(1/2) states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations of fine and hyperfine splittings and QED terms, we find r(p) = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by -110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.

18.
Appl Opt ; 54(32): 9400-8, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26560764

RESUMO

Thin-disk laser pump layouts yielding an increased number of passes for a given pump module size and pump source quality are proposed. These layouts result from a general scheme based on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard, commercially available pump optics with an additional mirror pair. More pump passes yield better efficiency, opening the way for the usage of active materials with low absorption. In a standard multipass pump design, scaling of the number of beam passes brings about an increase in the overall size of the optical arrangement or an increase in the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applications.

19.
Opt Express ; 22(11): 13050-62, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921502

RESUMO

A multipass laser cavity is presented which can be used to illuminate an elongated volume from a transverse direction. The illuminated volume can also have a very large transverse cross section. Convenient access to the illuminated volume is granted. The multipass cavity is very robust against misalignment, and no active stabilization is needed. The scheme is suitable for example in beam experiments, where the beam path must not be blocked by a laser mirror, or if the illuminated volume must be very large. This cavity was used for the muonic-hydrogen experiment in which 6 µm laser light illuminated a volume of 7 × 25 × 176 mm3, using mirrors that are only 12 mm in height. We present our measurement of the intensity distribution inside the multipass cavity and show that this is in good agreement with our simulation.

20.
Phys Rev Lett ; 113(12): 120405, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25279611

RESUMO

We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of ß=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 →3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler shifted frequencies required for resonance are measured with an accuracy of <4×10(-9) using optical-optical double resonance spectroscopy. This allows us to verify the special relativity relation between the time dilation factor γ and the velocity ß, γ√1-ß2=1 to within ±2.3×10(-9) at this velocity. The result, which is singled out by a high boost velocity ß, is also interpreted within Lorentz invariance violating test theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA