Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(5): 654-665, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888898

RESUMO

Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.


Assuntos
Imunidade Adaptativa/imunologia , Suscetibilidade a Doenças/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Imunidade Adaptativa/genética , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , População Negra/genética , Células Dendríticas/imunologia , Suscetibilidade a Doenças/sangue , Suscetibilidade a Doenças/parasitologia , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon gama/metabolismo , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Masculino , RNA-Seq , Análise de Sistemas , Linfócitos T/imunologia , Linfócitos T/metabolismo , População Branca/genética , Adulto Jovem
2.
Nat Immunol ; 20(3): 301-312, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664737

RESUMO

The fetus is thought to be protected from exposure to foreign antigens, yet CD45RO+ T cells reside in the fetal intestine. Here we combined functional assays with mass cytometry, single-cell RNA sequencing and high-throughput T cell antigen receptor (TCR) sequencing to characterize the CD4+ T cell compartment in the human fetal intestine. We identified 22 CD4+ T cell clusters, including naive-like, regulatory-like and memory-like subpopulations, which were confirmed and further characterized at the transcriptional level. Memory-like CD4+ T cells had high expression of Ki-67, indicative of cell division, and CD5, a surrogate marker of TCR avidity, and produced the cytokines IFN-γ and IL-2. Pathway analysis revealed a differentiation trajectory associated with cellular activation and proinflammatory effector functions, and TCR repertoire analysis indicated clonal expansions, distinct repertoire characteristics and interconnections between subpopulations of memory-like CD4+ T cells. Imaging mass cytometry indicated that memory-like CD4+ T cells colocalized with antigen-presenting cells. Collectively, these results provide evidence for the generation of memory-like CD4+ T cells in the human fetal intestine that is consistent with exposure to foreign antigens.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Feto/imunologia , Memória Imunológica/imunologia , Intestinos/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD5/genética , Antígenos CD5/imunologia , Antígenos CD5/metabolismo , Células Cultivadas , Feto/citologia , Feto/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Memória Imunológica/genética , Imunofenotipagem , Intestinos/citologia , Intestinos/embriologia , Antígeno Ki-67/genética , Antígeno Ki-67/imunologia , Antígeno Ki-67/metabolismo
3.
Immunity ; 44(5): 1227-39, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27178470

RESUMO

Inflammatory intestinal diseases are characterized by abnormal immune responses and affect distinct locations of the gastrointestinal tract. Although the role of several immune subsets in driving intestinal pathology has been studied, a system-wide approach that simultaneously interrogates all major lineages on a single-cell basis is lacking. We used high-dimensional mass cytometry to generate a system-wide view of the human mucosal immune system in health and disease. We distinguished 142 immune subsets and through computational applications found distinct immune subsets in peripheral blood mononuclear cells and intestinal biopsies that distinguished patients from controls. In addition, mucosal lymphoid malignancies were readily detected as well as precursors from which these likely derived. These findings indicate that an integrated high-dimensional analysis of the entire immune system can identify immune subsets associated with the pathogenesis of complex intestinal disorders. This might have implications for diagnostic procedures, immune-monitoring, and treatment of intestinal diseases and mucosal malignancies.


Assuntos
Doença Celíaca/imunologia , Doença de Crohn/imunologia , Citometria por Imagem/métodos , Mucosa Intestinal/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Linfócitos/fisiologia , Linfoma de Células T/imunologia , Adulto , Idoso , Doença Celíaca/diagnóstico , Estudos de Coortes , Biologia Computacional , Doença de Crohn/diagnóstico , Feminino , Células HEK293 , Humanos , Testes Imunológicos , Linfoma de Células T/diagnóstico , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica , Especificidade de Órgãos , Análise de Célula Única
4.
Nature ; 573(7772): 61-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435019

RESUMO

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Assuntos
Astrócitos/classificação , Evolução Biológica , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/classificação , Adolescente , Adulto , Idoso , Animais , Astrócitos/citologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural , Neurônios/citologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética , Adulto Jovem
5.
Neurobiol Dis ; 167: 105684, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247551

RESUMO

Microglia have been identified as key players in Alzheimer's disease pathogenesis, and other neurodegenerative diseases. Iba1, and more specifically TMEM119 and P2RY12 are gaining ground as presumedly more specific microglia markers, but comprehensive characterization of the expression of these three markers individually as well as combined is currently missing. Here we used a multispectral immunofluorescence dataset, in which over seventy thousand microglia from both aged controls and Alzheimer patients have been analysed for expression of Iba1, TMEM119 and P2RY12 on a single-cell level. For all markers, we studied the overlap and differences in expression patterns and the effect of proximity to ß-amyloid plaques. We found no difference in absolute microglia numbers between control and Alzheimer subjects, but the prevalence of specific combinations of markers (phenotypes) differed greatly. In controls, the majority of microglia expressed all three markers. In Alzheimer patients, a significant loss of TMEM119+-phenotypes was observed, independent of the presence of ß-amyloid plaques in its proximity. Contrary, phenotypes showing loss of P2RY12, but consistent Iba1 expression were increasingly prevalent around ß-amyloid plaques. No morphological features were conclusively associated with loss or gain of any of the markers or any of the identified phenotypes. All in all, none of the three markers were expressed by all microglia, nor can be wholly regarded as a pan- or homeostatic marker, and preferential phenotypes were observed depending on the surrounding pathological or homeostatic environment. This work could help select and interpret microglia markers in previous and future studies.


Assuntos
Doença de Alzheimer , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Placa Amiloide/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
6.
Cytometry A ; 99(12): 1187-1197, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196108

RESUMO

Imaging mass cytometry (IMC) allows the detection of multiple antigens (approximately 40 markers) combined with spatial information, making it a unique tool for the evaluation of complex biological systems. Due to its widespread availability and retained tissue morphology, formalin-fixed, paraffin-embedded (FFPE) tissues are often a material of choice for IMC studies. However, antibody performance and signal to noise ratios can differ considerably between FFPE tissues as a consequence of variations in tissue processing, including fixation. In contrast to batch effects caused by differences in the immunodetection procedure, variations in tissue processing are difficult to control. We investigated the effect of immunodetection-related signal intensity fluctuations on IMC analysis and phenotype identification, in a cohort of 12 colorectal cancer tissues. Furthermore, we explored different normalization strategies and propose a workflow to normalize IMC data by semi-automated background removal, using publicly available tools. This workflow can be directly applied to previously acquired datasets and considerably improves the quality of IMC data, thereby supporting the analysis and comparison of multiple samples.


Assuntos
Formaldeído , Citometria por Imagem , Anticorpos , Biomarcadores , Diagnóstico por Imagem , Humanos , Fixação de Tecidos
7.
Gut ; 69(4): 691-703, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31270164

RESUMO

OBJECTIVE: A comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC. DESIGN: Thirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence. RESULTS: We discovered that a previously unappreciated innate lymphocyte population (Lin-CD7+CD127-CD56+CD45RO+) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103+CD69+) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and γδ T cells with highly similar activated (HLA-DR+CD38+PD-1+) phenotypes. Remarkably, activated γδ T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and γδ T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes. CONCLUSION: This work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.


Assuntos
Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Antígenos CD/metabolismo , Antígenos CD8/metabolismo , Estudos de Casos e Controles , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Humanos , Cadeias alfa de Integrinas/metabolismo , Contagem de Linfócitos , Linfócitos do Interstício Tumoral
8.
Bioinformatics ; 35(20): 4063-4071, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874801

RESUMO

MOTIVATION: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular markers at single-cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to explore the full heterogeneity of a biological sample at the single-cell level is currently limited by the number of markers measured simultaneously on a single panel. RESULTS: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers we can further untangle the heterogeneity of mass cytometry data, including rare cell-population detection. AVAILABILITY AND IMPLEMENTATION: Implementation is available on GitHub (https://github.com/tabdelaal/CyTOFmerge). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Biomarcadores , Análise por Conglomerados , Simulação por Computador
9.
J Autoimmun ; 107: 102361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31776056

RESUMO

Induction of antigen-specific regulatory T cells (Tregs) in vivo is the holy grail of current immune-regulating therapies in autoimmune diseases, such as type 1 diabetes. Tolerogenic dendritic cells (tolDCs) generated from monocytes by a combined treatment with vitamin D and dexamethasone (marked by CD52hi and CD86lo expression) induce antigen-specific Tregs. We evaluated the phenotypes of these Tregs using high-dimensional mass cytometry to identify a surface-based T cell signature of tolerogenic modulation. Naïve CD4+ T cells were stimulated with tolDCs or mature inflammatory DCs pulsed with proinsulin peptide, after which the suppressive capacity, cytokine production and phenotype of stimulated T cells were analysed. TolDCs induced suppressive T cell lines that were dominated by a naïve phenotype (CD45RA+CCR7+). These naïve T cells, however, did not show suppressive capacity, but were arrested in their naïve status. T cell cultures stimulated by tolDC further contained memory-like (CD45RA-CCR7-) T cells expressing regulatory markers Lag-3, CD161 and ICOS. T cells expressing CD25lo or CD25hi were most prominent and suppressed CD4+ proliferation, while CD25hi Tregs also effectively supressed effector CD8+ T cells. We conclude that tolDCs induce antigen-specific Tregs with various phenotypes. This extends our earlier findings pointing to a functionally diverse pool of antigen-induced and specific Tregs and provides the basis for immune-monitoring in clinical trials with tolDC.


Assuntos
Autoimunidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Tolerância Imunológica , Peptídeos/imunologia , Proinsulina/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Imunofenotipagem , Monócitos/imunologia , Monócitos/metabolismo
10.
Cytometry A ; 95(7): 769-781, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30861637

RESUMO

Mass cytometry by time-of-flight (CyTOF) is a valuable technology for high-dimensional analysis at the single cell level. Identification of different cell populations is an important task during the data analysis. Many clustering tools can perform this task, which is essential to identify "new" cell populations in explorative experiments. However, relying on clustering is laborious since it often involves manual annotation, which significantly limits the reproducibility of identifying cell-populations across different samples. The latter is particularly important in studies comparing different conditions, for example in cohort studies. Learning cell populations from an annotated set of cells solves these problems. However, currently available methods for automatic cell population identification are either complex, dependent on prior biological knowledge about the populations during the learning process, or can only identify canonical cell populations. We propose to use a linear discriminant analysis (LDA) classifier to automatically identify cell populations in CyTOF data. LDA outperforms two state-of-the-art algorithms on four benchmark datasets. Compared to more complex classifiers, LDA has substantial advantages with respect to the interpretable performance, reproducibility, and scalability to larger datasets with deeper annotations. We apply LDA to a dataset of ~3.5 million cells representing 57 cell populations in the Human Mucosal Immune System. LDA has high performance on abundant cell populations as well as the majority of rare cell populations, and provides accurate estimates of cell population frequencies. Further incorporating a rejection option, based on the estimated posterior probabilities, allows LDA to identify previously unknown (new) cell populations that were not encountered during training. Altogether, reproducible prediction of cell population compositions using LDA opens up possibilities to analyze large cohort studies based on CyTOF data. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Células da Medula Óssea/classificação , Citometria de Fluxo/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Análise por Conglomerados , Conjuntos de Dados como Assunto , Humanos , Camundongos , Reprodutibilidade dos Testes
11.
Nucleic Acids Res ; 45(10): e83, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132031

RESUMO

Spatial and temporal brain transcriptomics has recently emerged as an invaluable data source for molecular neuroscience. The complexity of such data poses considerable challenges for analysis and visualization. We present BrainScope: a web portal for fast, interactive visual exploration of the Allen Atlases of the adult and developing human brain transcriptome. Through a novel methodology to explore high-dimensional data (dual t-SNE), BrainScope enables the linked, all-in-one visualization of genes and samples across the whole brain and genome, and across developmental stages. We show that densities in t-SNE scatter plots of the spatial samples coincide with anatomical regions, and that densities in t-SNE scatter plots of the genes represent gene co-expression modules that are significantly enriched for biological functions. We also show that the topography of the gene t-SNE maps reflect brain region-specific gene functions, enabling hypothesis and data driven research. We demonstrate the discovery potential of BrainScope through three examples: (i) analysis of cell type specific gene sets, (ii) analysis of a set of stable gene co-expression modules across the adult human donors and (iii) analysis of the evolution of co-expression of oligodendrocyte specific genes over developmental stages. BrainScope is publicly accessible at www.brainscope.nl.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma Humano , Software , Transcriptoma , Adolescente , Adulto , Atlas como Assunto , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Humanos , Lactente , Anotação de Sequência Molecular , Oligodendroglia/citologia , Oligodendroglia/metabolismo
12.
IEEE Trans Vis Comput Graph ; 30(7): 4403-4415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38345956

RESUMO

The need to understand the structure of hierarchical or high-dimensional data is present in a variety of fields. Hyperbolic spaces have proven to be an important tool for embedding computations and analysis tasks as their non-linear nature lends itself well to tree or graph data. Subsequently, they have also been used in the visualization of high-dimensional data, where they exhibit increased embedding performance. However, none of the existing dimensionality reduction methods for embedding into hyperbolic spaces scale well with the size of the input data. That is because the embeddings are computed via iterative optimization schemes and the computation cost of every iteration is quadratic in the size of the input. Furthermore, due to the non-linear nature of hyperbolic spaces, euclidean acceleration structures cannot directly be translated to the hyperbolic setting. This article introduces the first acceleration structure for hyperbolic embeddings, building upon a polar quadtree. We compare our approach with existing methods and demonstrate that it computes embeddings of similar quality in significantly less time. Implementation and scripts for the experiments can be found at https://graphics.tudelft.nl/accelerating-hyperbolic-tsne.

13.
IEEE Trans Vis Comput Graph ; 30(1): 175-185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871056

RESUMO

Exploration and analysis of high-dimensional data are important tasks in many fields that produce large and complex data, like the financial sector, systems biology, or cultural heritage. Tailor-made visual analytics software is developed for each specific application, limiting their applicability in other fields. However, as diverse as these fields are, their characteristics and requirements for data analysis are conceptually similar. Many applications share abstract tasks and data types and are often constructed with similar building blocks. Developing such applications, even when based mostly on existing building blocks, requires significant engineering efforts. We developed ManiVault, a flexible and extensible open-source visual analytics framework for analyzing high-dimensional data. The primary objective of ManiVault is to facilitate rapid prototyping of visual analytics workflows for visualization software developers and practitioners alike. ManiVault is built using a plugin-based architecture that offers easy extensibility. While our architecture deliberately keeps plugins self-contained, to guarantee maximum flexibility and re-usability, we have designed and implemented a messaging API for tight integration and linking of modules to support common visual analytics design patterns. We provide several visualization and analytics plugins, and ManiVault's API makes the integration of new plugins easy for developers. ManiVault facilitates the distribution of visualization and analysis pipelines and results for practitioners through saving and reproducing complete application states. As such, ManiVault can be used as a communication tool among researchers to discuss workflows and results. A copy of this paper and all supplemental material is available at osf.io/9k6jw, and source code at github.com/ManiVaultStudio.

14.
bioRxiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005368

RESUMO

Gene co-expression provides crucial insights into biological functions, however, there is a lack of exploratory analysis tools for localized gene co-expression in large-scale datasets. We present GeneSurfer, an interactive interface designed to explore localized transcriptome-wide gene co-expression patterns in the 3D spatial domain. Key features of GeneSurfer include transcriptome-wide gene filtering and gene clustering based on spatial local co-expression within transcriptomically similar cells, multi-slice 3D rendering of average expression of gene clusters, and on-the-fly Gene Ontology term annotation of co-expressed gene sets. Additionally, GeneSurfer offers multiple linked views for investigating individual genes or gene co-expression in the spatial domain at each exploration stage. Demonstrating its utility with both spatial transcriptomics and single-cell RNA sequencing data from the Allen Brain Cell Atlas, GeneSurfer effectively identifies and annotates localized transcriptome-wide co-expression, providing biological insights and facilitating hypothesis generation and validation.

15.
Cell Rep Methods ; 3(12): 100645, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37972590

RESUMO

In spatial transcriptomics (ST) data, biologically relevant features such as tissue compartments or cell-state transitions are reflected by gene expression gradients. Here, we present SpaceWalker, a visual analytics tool for exploring the local gradient structure of 2D and 3D ST data. The user can be guided by the local intrinsic dimensionality of the high-dimensional data to define seed locations, from which a flood-fill algorithm identifies transcriptomically similar cells on the fly, based on the high-dimensional data topology. In several use cases, we demonstrate that the spatial projection of these flooded cells highlights tissue architectural features and that interactive retrieval of gene expression gradients in the spatial and transcriptomic domains confirms known biology. We also show that SpaceWalker generalizes to several different ST protocols and scales well to large, multi-slice, 3D whole-brain ST data while maintaining real-time interaction performance.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Encéfalo , Transcriptoma/genética , Inundações
16.
Science ; 382(6667): eade9516, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824638

RESUMO

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Assuntos
Cognição , Hominidae , Neocórtex , Lobo Temporal , Animais , Humanos , Perfilação da Expressão Gênica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiologia , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiologia , Especificidade da Espécie , Lobo Temporal/fisiologia
17.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35217577

RESUMO

BACKGROUND: The composition of the tumor immune microenvironment (TIME) associated with good prognosis generally also predicts the success of immunotherapy, and both entail the presence of pre-existing tumor-specific T cells. Here, the blueprint of the TIME associated with such an ongoing tumor-specific T-cell response was dissected in a unique prospective oropharyngeal squamous cell carcinoma (OPSCC) cohort, in which tumor-specific tumor-infiltrating T cells were detected (immune responsiveness (IR+)) or not (lack of immune responsiveness (IR-)). METHODS: A comprehensive multimodal, high-dimensional strategy was applied to dissect the TIME of treatment-naive IR+ and IR- OPSCC tissue, including bulk RNA sequencing (NanoString), imaging mass cytometry (Hyperion) for phenotyping and spatial interaction analyses of immune cells, and combined single-cell gene expression profiling and T-cell receptor (TCR) sequencing (single-cell RNA sequencing (scRNAseq)) to characterize the transcriptional states of clonally expanded tumor-infiltrating T cells. RESULTS: IR+ patients had an excellent survival during >10 years follow-up. The tumors of IR+ patients expressed higher levels of genes strongly related to interferon gamma signaling, T-cell activation, TCR signaling, and mononuclear cell differentiation, as well as genes involved in several immune signaling pathways, than IR- patients. The top differently overexpressed genes included CXCL12 and LTB, involved in ectopic lymphoid structure development. Moreover, scRNAseq not only revealed that CD4+ T cells were the main producers of LTB but also identified a subset of clonally expanded CD8+ T cells, dominantly present in IR+ tumors, which secreted the T cell and dendritic cell (DC) attracting chemokine CCL4. Indeed, immune cell infiltration in IR+ tumors is stronger, highly coordinated, and has a distinct spatial phenotypical signature characterized by intratumoral microaggregates of CD8+CD103+ and CD4+ T cells with DCs. In contrast, the IR- TIME comprised spatial interactions between lymphocytes and various immunosuppressive myeloid cell populations. The impact of these chemokines on local immunity and clinical outcome was confirmed in an independent The Cancer Genome Atlas OPSCC cohort. CONCLUSION: The production of lymphoid cell attracting and organizing chemokines by tumor-specific T cells in IR+ tumors constitutes a positive feedback loop to sustain the formation of the DC-T-cell microaggregates and identifies patients with excellent survival after standard therapy.


Assuntos
Quimiocinas/metabolismo , Monitorização Imunológica/métodos , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Feminino , Humanos , Masculino
18.
Front Immunol ; 13: 893803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812429

RESUMO

Chronic intestinal inflammation underlies inflammatory bowel disease (IBD). Previous studies indicated alterations in the cellular immune system; however, it has been challenging to interrogate the role of all immune cell subsets simultaneously. Therefore, we aimed to identify immune cell types associated with inflammation in IBD using high-dimensional mass cytometry. We analyzed 188 intestinal biopsies and paired blood samples of newly-diagnosed, treatment-naive patients (n=42) and controls (n=26) in two independent cohorts. We applied mass cytometry (36-antibody panel) to resolve single cells and analyzed the data with unbiased Hierarchical-SNE. In addition, imaging-mass cytometry (IMC) was performed to reveal the spatial distribution of the immune subsets in the tissue. We identified 44 distinct immune subsets. Correlation network analysis identified a network of inflammation-associated subsets, including HLA-DR+CD38+ EM CD4+ T cells, T regulatory-like cells, PD1+ EM CD8+ T cells, neutrophils, CD27+ TCRγδ cells and NK cells. All disease-associated subsets were validated in a second cohort. This network was abundant in a subset of patients, independent of IBD subtype, severity or intestinal location. Putative disease-associated CD4+ T cells were detectable in blood. Finally, imaging-mass cytometry revealed the spatial colocalization of neutrophils, memory CD4+ T cells and myeloid cells in the inflamed intestine. Our study indicates that a cellular network of both innate and adaptive immune cells colocalizes in inflamed biopsies from a subset of patients. These results contribute to dissecting disease heterogeneity and may guide the development of targeted therapeutics in IBD.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Linfócitos T CD8-Positivos , Humanos , Inflamação , Intestinos/patologia
19.
IEEE Trans Vis Comput Graph ; 27(1): 98-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369380

RESUMO

Tissue functionality is determined by the characteristics of tissue-resident cells and their interactions within their microenvironment. Imaging Mass Cytometry offers the opportunity to distinguish cell types with high precision and link them to their spatial location in intact tissues at sub-cellular resolution. This technology produces large amounts of spatially-resolved high-dimensional data, which constitutes a serious challenge for the data analysis. We present an interactive visual analysis workflow for the end-to-end analysis of Imaging Mass Cytometry data that was developed in close collaboration with domain expert partners. We implemented the presented workflow in an interactive visual analysis tool; ImaCytE. Our workflow is designed to allow the user to discriminate cell types according to their protein expression profiles and analyze their cellular microenvironments, aiding in the formulation or verification of hypotheses on tissue architecture and function. Finally, we show the effectiveness of our workflow and ImaCytE through a case study performed by a collaborating specialist.


Assuntos
Biologia Computacional/métodos , Citometria por Imagem/métodos , Microambiente Celular/fisiologia , Processamento de Imagem Assistida por Computador , Fenótipo , Software
20.
IEEE Trans Vis Comput Graph ; 27(2): 755-764, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33085617

RESUMO

Geological analysis of 3D Digital Outcrop Models (DOMs) for reconstruction of ancient habitable environments is a key aspect of the upcoming ESA ExoMars 2022 Rosalind Franklin Rover and the NASA 2020 Rover Perseverance missions in seeking signs of past life on Mars. Geologists measure and interpret 3D DOMs, create sedimentary logs and combine them in 'correlation panels' to map the extents of key geological horizons, and build a stratigraphic model to understand their position in the ancient landscape. Currently, the creation of correlation panels is completely manual and therefore time-consuming, and inflexible. With InCorr we present a visualization solution that encompasses a 3D logging tool and an interactive data-driven correlation panel that evolves with the stratigraphic analysis. For the creation of InCorr we closely cooperated with leading planetary geologists in the form of a design study. We verify our results by recreating an existing correlation analysis with InCorr and validate our correlation panel against a manually created illustration. Further, we conducted a user-study with a wider circle of geologists. Our evaluation shows that InCorr efficiently supports the domain experts in tackling their research questions and that it has the potential to significantly impact how geologists work with digital outcrop representations in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA