Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(2): 433-438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38140767

RESUMO

BACKGROUND: Clinical trials of disease-modifying therapies in PD require valid and responsive primary outcome measures that are relevant to patients. OBJECTIVES: The objective is to select a patient-centered primary outcome measure for disease-modification trials over three or more years. METHODS: Experts in Parkinson's disease (PD), statistics, and health economics and patient and public involvement and engagement (PPIE) representatives reviewed and discussed potential outcome measures. A larger PPIE group provided input on their key considerations for such an endpoint. Feasibility, clinimetric properties, and relevance to patients were assessed and synthesized. RESULTS: Although initial considerations favored the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III in Off, feasibility, PPIE input, and clinimetric properties supported the MDS-UPDRS Part II. However, PPIE input also highlighted the importance of nonmotor symptoms, especially in the longer term, leading to the selection of the MDS-UPDRS Parts I + II sum score. CONCLUSIONS: The MDS-UPDRS Parts I + II sum score was chosen as the primary outcome for large 3-year disease-modification trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/diagnóstico , Índice de Gravidade de Doença , Testes de Estado Mental e Demência , Sociedades Médicas
2.
Mol Psychiatry ; 27(4): 2114-2125, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35136228

RESUMO

Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
3.
J Cogn Neurosci ; 32(10): 1823-1836, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32644882

RESUMO

We discuss a new framework for understanding the structure of motor control. Our approach integrates existing models of motor control with the reality of hierarchical cortical processing and the parallel segregated loops that characterize cortical-subcortical connections. We also incorporate the recent claim that cortex functions via predictive representation and optimal information utilization. Our framework assumes that each cortical area engaged in motor control generates a predictive model of a different aspect of motor behavior. In maintaining these predictive models, each area interacts with a different part of the cerebellum and BG. These subcortical areas are thus engaged in domain-appropriate system identification and optimization. This refocuses the question of division of function among different cortical areas. What are the different aspects of motor behavior that are predictively modeled? We suggest that one fundamental division is between modeling of task and body whereas another is the model of state and action. Thus, we propose that the posterior parietal cortex, somatosensory cortex, premotor cortex, and motor cortex represent task state, body state, task action, and body action, respectively. In the second part of this review, we demonstrate how this division of labor can better account for many recent findings of movement encoding, especially in the premotor and posterior parietal cortices.


Assuntos
Córtex Motor , Neuroanatomia , Humanos , Movimento , Lobo Parietal , Córtex Somatossensorial
5.
J Neurosci ; 37(37): 9076-9085, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821678

RESUMO

Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior-parietal cortex of individual subjects explained their movement-extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities.SIGNIFICANCE STATEMENT Neural activity and movement kinematics are remarkably variable. Although intertrial variability is rarely studied, here, we demonstrate that individual human subjects exhibit distinct magnitudes of neural and kinematic variability that are reproducible across movements to different targets and when performing these movements with either arm. Furthermore, when examining the relationship between cortical variability and movement variability, we find that cortical fMRI variability in parietal cortex of individual subjects explained their movement extent variability. This enabled us to explain why some subjects performed more variable movements than others based on their cortical variability magnitudes.


Assuntos
Córtex Motor/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
6.
J Neurosci ; 37(37): 9054-9063, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821649

RESUMO

Ipsilateral motor areas of cerebral cortex are active during arm movements and even reliably predict movement direction. Is coding similar during ipsilateral and contralateral movements? If so, is it in extrinsic (world-centered) or intrinsic (joint-configuration) coordinates? We addressed these questions by examining the similarity of multivoxel fMRI patterns in visuomotor cortical regions during unilateral reaching movements with both arms. The results of three complementary analyses revealed that fMRI response patterns were similar across right and left arm movements to identical targets (extrinsic coordinates) in visual cortices, and across movements with equivalent joint-angles (intrinsic coordinates) in motor cortices. We interpret this as evidence for the existence of distributed neural populations in multiple motor system areas that encode ipsilateral and contralateral movements in a similar manner: according to their intrinsic/joint coordinates.SIGNIFICANCE STATEMENT Cortical motor control exhibits clear lateralization: each hemisphere controls the motor output of the contralateral body. Nevertheless, neural populations in ipsilateral areas across the visuomotor hierarchy are active during unilateral movements. We show that fMRI response patterns in the motor cortices are similar for both arms if the movement direction is mirror-reversed across the midline. This suggests that in both ipsilateral and contralateral motor cortices, neural populations have effector-invariant coding of movements in intrinsic coordinates. This not only affects our understanding of motor control, it may serve in the development of brain machine interfaces that also use ipsilateral neural activity.


Assuntos
Lateralidade Funcional/fisiologia , Modelos Neurológicos , Córtex Motor/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino
7.
Cerebellum ; 16(2): 293-305, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27255704

RESUMO

Are long pauses in the firing of cerebellar interneurons (CINs) related to Purkinje cell (PC) pauses? If PC pauses affect the larger network, then we should find a close relationship between CIN pauses and those in PCs. We recorded activity of 241 cerebellar cortical neurons (206 CINs and 35 PCs) in three anesthetized cats. One fifth of the CINs and more than half of the PCs were identified as pausing. Pauses in CINs and PCs showed some differences: CIN mean pause length was shorter, and, after pauses, only CINs had sustained reduction in their firing rate (FR). Almost all pausing CINs fell into same cluster when we used different methods of clustering CINs by their spontaneous activity. The mean spontaneous firing rate of that cluster was approximately 53 Hz. We also examined cross-correlations in simultaneously recorded neurons. Of 39 cell pairs examined, 14 (35 %) had cross-correlations significantly different from those expected by chance. Almost half of the pairs with two CINs showed statistically significant negative correlations. In contrast, PC/CIN pairs did not often show significant effects in the cross-correlation (12/15 pairs). However, for both CIN/CIN and PC/CIN pairs, pauses in one unit tended to correspond to a reduction in the firing rate of the adjacent unit. In our view, our results support the possibility that previously reported PC bistability is part of a larger network response and not merely a biophysical property of PCs. Any functional role for PC bistability should probably be sought in the context of the broader network.


Assuntos
Interneurônios/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anestesia , Animais , Gatos , Análise por Conglomerados , Interneurônios/efeitos dos fármacos , Microeletrodos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Células de Purkinje/efeitos dos fármacos , Processamento de Sinais Assistido por Computador , Fatores de Tempo
8.
Cereb Cortex ; 26(4): 1440-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25316335

RESUMO

Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.


Assuntos
Transtorno Autístico/patologia , Encéfalo/anormalidades , Adolescente , Adulto , Idoso , Transtorno do Espectro Autista , Criança , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Neurosci ; 35(17): 6813-21, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25926457

RESUMO

Directional selectivity during visually guided hand movements is a fundamental characteristic of neural populations in multiple motor areas of the primate brain. In the current study, we assessed how directional selectivity changes when reaching movements are dissociated from their visual feedback by rotating the visual field. We recorded simultaneous movement kinematics and fMRI activity while human subjects performed out-and-back movements to four peripheral targets before and after adaptation to a 45° visuomotor rotation. A classification algorithm was trained to identify movement direction according to voxel-by-voxel fMRI patterns in each of several brain areas. The direction of movements was successfully decoded with above-chance accuracy in multiple motor and visual areas when training and testing the classifier on trials within each condition, thereby demonstrating the existence of directionally selective fMRI patterns within each stage of the experiment. Most importantly, when training the classifier on baseline trials and decoding rotated trials, motor brain areas exhibited above-chance decoding according to the original movement direction and visual brain areas exhibited above-chance decoding according to the rotated visual target location, while posterior parietal cortex (PPC) exhibited chance-level decoding according to both. These results reveal that directionally selective fMRI patterns in motor system areas faithfully represent movement direction regardless of visual feedback, while fMRI patterns in visual system areas faithfully represent target location regardless of movement direction. Directionally selective fMRI patterns in PPC, however, were altered following adaptation learning, thereby suggesting that the novel visuomotor mapping, which was learned during visuomotor adaptation, is stored in PPC.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Orientação/fisiologia , Adulto , Atenção/fisiologia , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor , Adulto Jovem
10.
J Neurosci ; 35(4): 1432-42, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632121

RESUMO

The effort to determine morphological and anatomically defined neuronal characteristics from extracellularly recorded physiological signatures has been attempted with varying success in different brain areas. Recent studies have attempted such classification of cerebellar interneurons (CINs) based on statistical measures of spontaneous activity. Previously, such efforts in different brain areas have used supervised clustering methods based on standard parameterizations of spontaneous interspike interval (ISI) histograms. We worried that this might bias researchers toward positive identification results and decided to take a different approach. We recorded CINs from anesthetized cats. We used unsupervised clustering methods applied to a nonparametric representation of the ISI histograms to identify groups of CINs with similar spontaneous activity and then asked how these groups map onto different cell types. Our approach was a fuzzy C-means clustering algorithm applied to the Kullbach-Leibler distances between ISI histograms. We found that there is, in fact, a natural clustering of the spontaneous activity of CINs into six groups but that there was no relationship between this clustering and the standard morphologically defined cell types. These results proved robust when generalization was tested to completely new datasets, including datasets recorded under different anesthesia conditions and in different laboratories and different species (rats). Our results suggest the importance of an unsupervised approach in categorizing neurons according to their extracellular activity. Indeed, a reexamination of such categorization efforts throughout the brain may be necessary. One important open question is that of functional differences of our six spontaneously defined clusters during actual behavior.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/citologia , Interneurônios/classificação , Interneurônios/citologia , Modelos Neurológicos , Algoritmos , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Gatos , Análise por Conglomerados , Simulação por Computador , Camundongos , Ratos , Especificidade da Espécie
11.
IEEE Trans Biomed Eng ; PP2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700960

RESUMO

OBJECTIVE: In recent years, radar technology has been extensively utilized in contactless human behavior monitoring systems. The unique capabilities of ultra-wideband (UWB) radars compared to conventional radar technologies, due to time-of-flight measurements, present new untapped opportunities for in-depth monitoring of human movement during overground locomotion. This study aims to investigate the deployability of UWB radars in accurately capturing the gait patterns of healthy individuals with no known walking impairments. METHODS: A novel algorithm was developed that can extract ten clinical spatiotemporal gait features using the Doppler information captured from three monostatic UWB radar sensors during a 6-meter walking task. Key gait events are detected from lower-extremity movements based on the joint range-Doppler-time representation of recorded radar data. The estimated gait parameters were validated against a gold-standard optical motion tracking system using 12 healthy volunteers. RESULTS: On average, nine gait parameters can be consistently estimated with 90-98% accuracy, while capturing 94.5% of participants' gait variability and 90.8% of inter-limb symmetry. Correlation and Bland-Altman analysis revealed a strong correlation between radar-based parameters and the ground-truth values, with average discrepancies consistently close to 0. CONCLUSION: Results prove that radar sensing can provide accurate biomarkers to supplement clinical human gait assessment, with quality similar to gold standard assessment. SIGNIFICANCE: Radars can potentially allow a transition from expensive and cumbersome lab-based gait analysis tools toward a completely unobtrusive and affordable solution for in-home deployment, enabling continuous long-term monitoring of individuals for research and healthcare applications.

12.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941230

RESUMO

VR rehabilitation is an established field by now, however, it often refers to computer screen-based interactive rehabilitation activities. In recent years, there was an increased use of VR-headsets, which can provide an immersive virtual environment for real-world tasks, but they are lacking any physical interaction with the task objects and any proprioceptive feedback. Here, we focus on Embodied Virtual Reality (EVR), an emerging field where not only the visual input via VR-headset but also the haptic feedback is physically correct. This happens because subjects interact with physical objects that are veridically aligned in Virtual Reality. This technology lets us manipulate motor performance and motor learning through visual feedback perturbations. Bill-EVR is a framework that allows interventions in the performance of real-world tasks, such as playing pool billiard, engaging end-users in motivating life-like situations to trigger motor (re)learning - subjects see in VR and handle the real-world cue stick, the pool table and shoot physical balls. Specifically, we developed our platform to isolate and evaluate different mechanisms of motor learning to investigate its two main components, error-based and reward-based motor adaptation. This understanding can provide insights for improvements in neurorehabilitation: indeed, reward-based mechanisms are putatively impaired by degradation of the dopaminergic system, such as in Parkinson's disease, while error-based mechanisms are essential for recovering from stroke-induced movement errors. Due to its fully customisable features, our EVR framework can be used to facilitate the improvement of several conditions, providing a valid extension of VR-based implementations and constituting a motor learning tool that can be completely tailored to the individual needs of patients.


Assuntos
Acidente Vascular Cerebral , Realidade Virtual , Humanos , Aprendizagem , Movimento
13.
BMJ Open ; 13(8): e072094, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37536971

RESUMO

INTRODUCTION AND AIMS: Digital biomarkers can provide a cost-effective, objective and robust measure for neurological disease progression, changes in care needs and the effect of interventions. Motor function, physiology and behaviour can provide informative measures of neurological conditions and neurodegenerative decline. New digital technologies present an opportunity to provide remote, high-frequency monitoring of patients from within their homes. The purpose of the living lab study is to develop novel digital biomarkers of functional impairment in those living with neurodegenerative disease (NDD) and neurological conditions. METHODS AND ANALYSIS: The Living Lab study is a cross-sectional observational study of cognition and behaviour in people living with NDDs and other, non-degenerative neurological conditions. Patients (n≥25 for each patient group) with dementia, Parkinson's disease, amyotrophic lateral sclerosis, mild cognitive impairment, traumatic brain injury and stroke along with controls (n≥60) will be pragmatically recruited. Patients will carry out activities of daily living and functional assessments within the Living Lab. The Living Lab is an apartment-laboratory containing a functional kitchen, bathroom, bed and living area to provide a controlled environment to develop novel digital biomarkers. The Living Lab provides an important intermediary stage between the conventional laboratory and the home. Multiple passive environmental sensors, internet-enabled medical devices, wearables and electroencephalography (EEG) will be used to characterise functional impairments of NDDs and non-NDD conditions. We will also relate these digital technology measures to clinical and cognitive outcomes. ETHICS AND DISSEMINATION: Ethical approvals have been granted by the Imperial College Research Ethics Committee (reference number: 21IC6992). Results from the study will be disseminated at conferences and within peer-reviewed journals.


Assuntos
Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Estudos Transversais , Atividades Cotidianas , Doenças Neurodegenerativas/diagnóstico , Disfunção Cognitiva/psicologia , Cognição , Biomarcadores , Estudos Observacionais como Assunto
14.
PLoS One ; 16(1): e0245717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503022

RESUMO

Motor-learning literature focuses on simple laboratory-tasks due to their controlled manner and the ease to apply manipulations to induce learning and adaptation. Recently, we introduced a billiards paradigm and demonstrated the feasibility of real-world-neuroscience using wearables for naturalistic full-body motion-tracking and mobile-brain-imaging. Here we developed an embodied virtual-reality (VR) environment to our real-world billiards paradigm, which allows to control the visual feedback for this complex real-world task, while maintaining sense of embodiment. The setup was validated by comparing real-world ball trajectories with the trajectories of the virtual balls, calculated by the physics engine. We then ran our short-term motor learning protocol in the embodied VR. Subjects played billiard shots when they held the physical cue and hit a physical ball on the table while seeing it all in VR. We found comparable short-term motor learning trends in the embodied VR to those we previously reported in the physical real-world task. Embodied VR can be used for learning real-world tasks in a highly controlled environment which enables applying visual manipulations, common in laboratory-tasks and rehabilitation, to a real-world full-body task. Embodied VR enables to manipulate feedback and apply perturbations to isolate and assess interactions between specific motor-learning components, thus enabling addressing the current questions of motor-learning in real-world tasks. Such a setup can potentially be used for rehabilitation, where VR is gaining popularity but the transfer to the real-world is currently limited, presumably, due to the lack of embodiment.


Assuntos
Retroalimentação Sensorial , Aprendizagem , Atividade Motora , Realidade Virtual , Adulto , Feminino , Humanos , Masculino
15.
Sci Rep ; 11(1): 21375, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725355

RESUMO

Contemporary robotics gives us mechatronic capabilities for augmenting human bodies with extra limbs. However, how our motor control capabilities pose limits on such augmentation is an open question. We developed a Supernumerary Robotic 3rd Thumbs (SR3T) with two degrees-of-freedom controlled by the user's body to endow them with an extra contralateral thumb on the hand. We demonstrate that a pianist can learn to play the piano with 11 fingers within an hour. We then evaluate 6 naïve and 6 experienced piano players in their prior motor coordination and their capability in piano playing with the robotic augmentation. We show that individuals' augmented performance with the SR3T could be explained by our new custom motor coordination assessment, the Human Augmentation Motor Coordination Assessment (HAMCA) performed pre-augmentation. Our work demonstrates how supernumerary robotics can augment humans in skilled tasks and that individual differences in their augmentation capability are explainable by their individual motor coordination abilities.

16.
Intensive Care Med ; 47(5): 549-565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33974106

RESUMO

PURPOSE: The trajectory of mechanically ventilated patients with coronavirus disease 2019 (COVID-19) is essential for clinical decisions, yet the focus so far has been on admission characteristics without consideration of the dynamic course of the disease in the context of applied therapeutic interventions. METHODS: We included adult patients undergoing invasive mechanical ventilation (IMV) within 48 h of intensive care unit (ICU) admission with complete clinical data until ICU death or discharge. We examined the importance of factors associated with disease progression over the first week, implementation and responsiveness to interventions used in acute respiratory distress syndrome (ARDS), and ICU outcome. We used machine learning (ML) and Explainable Artificial Intelligence (XAI) methods to characterise the evolution of clinical parameters and our ICU data visualisation tool is available as a web-based widget ( https://www.CovidUK.ICU ). RESULTS: Data for 633 adults with COVID-19 who underwent IMV between 01 March 2020 and 31 August 2020 were analysed. Overall mortality was 43.3% and highest with non-resolution of hypoxaemia [60.4% vs17.6%; P < 0.001; median PaO2/FiO2 on the day of death was 12.3(8.9-18.4) kPa] and non-response to proning (69.5% vs.31.1%; P < 0.001). Two ML models using weeklong data demonstrated an increased predictive accuracy for mortality compared to admission data (74.5% and 76.3% vs 60%, respectively). XAI models highlighted the increasing importance, over the first week, of PaO2/FiO2 in predicting mortality. Prone positioning improved oxygenation only in 45% of patients. A higher peak pressure (OR 1.42[1.06-1.91]; P < 0.05), raised respiratory component (OR 1.71[ 1.17-2.5]; P < 0.01) and cardiovascular component (OR 1.36 [1.04-1.75]; P < 0.05) of the sequential organ failure assessment (SOFA) score and raised lactate (OR 1.33 [0.99-1.79]; P = 0.057) immediately prior to application of prone positioning were associated with lack of oxygenation response. Prone positioning was not applied to 76% of patients with moderate hypoxemia and 45% of those with severe hypoxemia and patients who died without receiving proning interventions had more missed opportunities for prone intervention [7 (3-15.5) versus 2 (0-6); P < 0.001]. Despite the severity of gas exchange deficit, most patients received lung-protective ventilation with tidal volumes less than 8 mL/kg and plateau pressures less than 30cmH2O. This was despite systematic errors in measurement of height and derived ideal body weight. CONCLUSIONS: Refractory hypoxaemia remains a major association with mortality, yet evidence based ARDS interventions, in particular prone positioning, were not implemented and had delayed application with an associated reduced responsiveness. Real-time service evaluation techniques offer opportunities to assess the delivery of care and improve protocolised implementation of evidence-based ARDS interventions, which might be associated with improvements in survival.


Assuntos
COVID-19 , Respiração Artificial , Adulto , Inteligência Artificial , Humanos , Decúbito Ventral , SARS-CoV-2 , Reino Unido
17.
Front Hum Neurosci ; 14: 354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982707

RESUMO

Many recent studies found signatures of motor learning in neural beta oscillations (13-30 Hz), and specifically in the post-movement beta rebound (PMBR). All these studies were in controlled laboratory-tasks in which the task designed to induce the studied learning mechanism. Interestingly, these studies reported opposing dynamics of the PMBR magnitude over learning for the error-based and reward-based tasks (increase vs. decrease, respectively). Here, we explored the PMBR dynamics during real-world motor-skill-learning in a billiards task using mobile-brain-imaging. Our EEG recordings highlight the opposing dynamics of PMBR magnitudes (increase vs. decrease) between different subjects performing the same task. The groups of subjects, defined by their neural dynamics, also showed behavioral differences expected for different learning mechanisms. Our results suggest that when faced with the complexity of the real-world different subjects might use different learning mechanisms for the same complex task. We speculate that all subjects combine multi-modal mechanisms of learning, but different subjects have different predominant learning mechanisms.

18.
Sci Rep ; 10(1): 20046, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208785

RESUMO

The neurobehavioral mechanisms of human motor-control and learning evolved in free behaving, real-life settings, yet this is studied mostly in reductionistic lab-based experiments. Here we take a step towards a more real-world motor neuroscience using wearables for naturalistic full-body motion-tracking and the sports of pool billiards to frame a real-world skill learning experiment. First, we asked if well-known features of motor learning in lab-based experiments generalize to a real-world task. We found similarities in many features such as multiple learning rates, and the relationship between task-related variability and motor learning. Our data-driven approach reveals the structure and complexity of movement, variability, and motor learning, enabling an in-depth understanding of the structure of motor learning in three ways: First, while expecting most of the movement learning is done by the cue-wielding arm, we find that motor learning affects the whole body, changing motor-control from head to toe. Second, during learning, all subjects decreased their movement variability and their variability in the outcome. Subjects who were initially more variable were also more variable after learning. Lastly, when screening the link across subjects between initial variability in individual joints and learning, we found that only the initial variability in the right forearm supination shows a significant correlation to the subjects' learning rates. This is in-line with the relationship between learning and variability: while learning leads to an overall reduction in movement variability, only initial variability in specific task-relevant dimensions can facilitate faster learning.

19.
Sci Rep ; 10(1): 11537, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665679

RESUMO

Recent technological developments in mobile brain and body imaging are enabling new frontiers of real-world neuroscience. Simultaneous recordings of body movement and brain activity from highly skilled individuals as they demonstrate their exceptional skills in real-world settings, can shed new light on the neurobehavioural structure of human expertise. Driving is a real-world skill which many of us acquire to different levels of expertise. Here we ran a case-study on a subject with the highest level of driving expertise-a Formula E Champion. We studied the driver's neural and motor patterns while he drove a sports car on the "Top Gear" race track under extreme conditions (high speed, low visibility, low temperature, wet track). His brain activity, eye movements and hand/foot movements were recorded. Brain activity in the delta, alpha, and beta frequency bands showed causal relation to hand movements. We herein demonstrate the feasibility of using mobile brain and body imaging even in very extreme conditions (race car driving) to study the sensory inputs, motor outputs, and brain states which characterise complex human skills.


Assuntos
Condução de Veículo , Mapeamento Encefálico , Encéfalo/fisiologia , Movimentos Oculares , Artefatos , Eletroencefalografia , Fixação Ocular , Humanos , Monitorização Fisiológica , Movimento , Visão Ocular
20.
Phys Life Rev ; 48: 162-163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237427
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA