Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 103-133, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32176524

RESUMO

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades , DNA/genética , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Cell ; 162(6): 1183-5, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359974

RESUMO

This year's Albert Lasker Basic Medical Research Award honors Evelyn Witkin and Stephen J. Elledge, two pioneers in elucidating the DNA damage response, whose contributions span more than 40 years.


Assuntos
Distinções e Prêmios , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Bacteriófago lambda/efeitos da radiação , Dano ao DNA/efeitos da radiação , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Escherichia coli/virologia , Células Eucarióticas/metabolismo , História do Século XX , História do Século XXI
3.
Mol Cell ; 82(13): 2360-2362, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803217

RESUMO

Tang et al. (2022) report that the DNA breaks that provoke chromothripsis-the pulverization and dramatic assembly into a rearranged chromosome-are generated by the base excision repair APE1 endonuclease, triggered by removing deoxyinosines that are created in DNA::RNA hybrids.


Assuntos
Cromotripsia , Reparo do DNA , DNA/genética , Dano ao DNA , Humanos
4.
Mol Cell ; 82(8): 1390-1397, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35452608

RESUMO

We asked experts from different fields-from genome maintenance and proteostasis to organelle degradation via ubiquitin and autophagy-"What does quality control mean to you?" Despite their diverse backgrounds, they converge on and discuss the importance of continuous quality control at all levels, context, communication, timing, decisions on whether to repair or remove, and the significance of dysregulated quality control in disease.


Assuntos
Autofagia , Ubiquitina , Proteostase , Ubiquitina/genética , Ubiquitina/metabolismo
5.
Nature ; 590(7847): 660-665, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597753

RESUMO

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Genoma/genética , Histonas/metabolismo , Humanos , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Coesinas
6.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31351878

RESUMO

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Assuntos
Troca Genética/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS Genet ; 20(2): e1010527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315739

RESUMO

Single-strand annealing (SSA) is initiated when a double strand break (DSB) occurs between two flanking repeated sequences, resulting in a deletion that leaves a single copy of the repeat. We studied budding yeast strains carrying two 200-bp URA3 sequences separated by 2.6 kb of spacer DNA (phage lambda) in which a site-specific DSB can be created by HO or Cas9 endonucleases. Repeat-mediated deletion requires removal of long 3'-ended single-stranded tails (flaps) by Rad1-Rad10 with the assistance of Msh2-Msh3, Saw1 and Slx4. A natural 3% divergence of unequally spaced heterologies between these repeats (designated F and A) causes a significant reduction in the frequency of SSA repair. This decrease is caused by heteroduplex rejection in which mismatches (MMs) in the annealed intermediate are recognized by the MutS (Msh2 and Msh6) components of the MM repair (MMR) pathway coupled to unwinding of the duplex by the Sgs1-Rmi1-Top3 helicase. MutL homologs, Mlh1-Pms1 (MutL), are not required for rejection but play their expected role in mismatch correction. Remarkably, heteroduplex rejection is very low in strains where the divergent repeats were immediately adjacent (Tailless strains) and the DSB was induced by Cas9. These results suggest that the presence of nonhomologous tails strongly stimulates heteroduplex rejection in SSA. DNA sequencing analysis of SSA products from the FA Tailed strain showed a gradient of correction favoring the sequence opposite each 3' end of the annealed strand. Mismatches located in the center of the repair intermediate were corrected by Msh2-Msh6 mediated mismatch correction, while correction of MMs at the extremity of the SSA intermediate often appears to use a different mechanism, possibly by 3' nonhomologous tail removal that includes part of the homologous sequence. In contrast, in FA Tailless strains there was a uniform repair of the MMs across the repeat. A distinctive pattern of correction was found in the absence of MSH2, in both Tailed and Tailless strains, different from the spectrum seen in a msh3Δ msh6Δ double mutant. Previous work has shown that SSA is Rad51-independent but dependent on the strand annealing activity of Rad52. However Rad52 becomes dispensable in a Tailless construct where the DSB is induced by Cas9 or in transformation of a plasmid where SSA occurs in the absence of nonhomologous tails.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Proteína 2 Homóloga a MutS/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
8.
Nature ; 578(7793): 112-121, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025012

RESUMO

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.


Assuntos
Variação Genética , Genoma Humano/genética , Neoplasias/genética , Rearranjo Gênico/genética , Genômica , Humanos , Mutagênese Insercional , Telomerase/genética
9.
EMBO J ; 40(10): e104847, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33844333

RESUMO

DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.


Assuntos
Reparo do DNA/fisiologia , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Humanos
10.
Mol Cell ; 65(3): 515-526.e3, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28065599

RESUMO

Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HMLα donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is ≤150 bp, efficient repair depends on the recombination enhancer, which tethers HMLα near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is ≤150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR.


Assuntos
Reparo do DNA , DNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , RNA Helicases DEAD-box/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Conversão Gênica , Recombinação Homóloga , RecQ Helicases/metabolismo
11.
PLoS Genet ; 18(9): e1010056, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054210

RESUMO

Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3' end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements. Although 2 of the 6 arrangements we tested were nearly as efficient as the evenly-spaced reference, 4 were significantly less efficient. A donor with all 10 mismatches clustered at the 3' invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5' end. Our data suggest that the efficiency of strand invasion is principally dictated by thermodynamic considerations, i.e., by the total number of base pairs that can be formed; but mismatch position-specific effects are also important. We also addressed an apparent difference between in vitro and in vivo strand exchange assays, where in vitro studies had suggested that at a single contiguous stretch of 8 consecutive bases was needed to be paired for stable strand pairing, while in vivo assays using 108-bp substrates found significant recombination even when every 6th base was mismatched. Now, using substrates of either 90 or 108 nt-the latter being the size of the in vivo templates-we find that in vitro D-loop results are very similar to the in vivo results. However, there are still notable differences between in vivo and in vitro assays that are especially evident with unevenly-distributed mismatches. Mismatches in the donor template are incorporated into the BIR product in a strongly polar fashion up to ~40 nucleotides from the 3' end. Mismatch incorporation depends on the 3'→ 5' proofreading exonuclease activity of DNA polymerase δ, with little contribution from Msh2/Mlh1 mismatch repair proteins, or from Rad1-Rad10 flap nuclease or the Mph1 helicase. Surprisingly, the probability of a mismatch 27 nt from the 3' end being replaced by donor sequence was the same whether the preceding 26 nucleotides were mismatched every 6th base or fully homologous. These data suggest that DNA polymerase δ "chews back" the 3' end of the invading strand without any mismatch-dependent cues from the strand invasion structure. However, there appears to be an alternative way to incorporate a mismatch at the first base at the 3' end of the donor.


Assuntos
Proteínas de Saccharomyces cerevisiae , DNA Polimerase III/genética , Reparo do DNA/genética , Replicação do DNA/genética , Exonucleases/genética , Proteína 2 Homóloga a MutS/genética , Nucleotídeos/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Genome Res ; 31(5): 775-788, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811083

RESUMO

We interrogated at nucleotide resolution the spatiotemporal order of chromatin changes that occur immediately following a site-specific double-strand break (DSB) upstream of the PHO5 locus and its subsequent repair by nonhomologous end joining (NHEJ). We observed the immediate eviction of a nucleosome flanking the break and the repositioning of adjacent nucleosomes away from the break. These early chromatin events were independent of the end-processing Mre11-Rad50-Xrs2 (MRX) complex and preceded the MRX-dependent broad eviction of histones and DNA end-resectioning that extends up to ∼8 kb away from the break. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population. Concomitant with DSB repair by NHEJ, we observed the redeposition and precise repositioning of nucleosomes at their originally occupied positions. This re-establishment of the prelesion chromatin landscape suggests that a DNA replication-independent mechanism exists to preserve epigenome organization following DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Nucleossomos , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/genética
13.
Annu Rev Genet ; 50: 1-28, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27732795

RESUMO

Double-strand breaks (DSBs) pose a severe challenge to genome integrity; consequently, cells have developed efficient mechanisms to repair DSBs through several pathways of homologous recombination and other nonhomologous end-joining processes. Much of our understanding of these pathways has come from the analysis of site-specific DSBs created by the HO endonuclease in the budding yeast Saccharomyces cerevisiae. I was fortunate to get in on the ground floor of analyzing the fate of synchronously induced DSBs through the study of what I coined "in vivo biochemistry." I have had the remarkable good fortune to profit from the development of new techniques that have permitted an ever more detailed dissection of these repair mechanisms, which are described here.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , Reparo do DNA por Junção de Extremidades , Replicação do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Conversão Gênica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Nucleicos Heteroduplexes , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell ; 137(2): 247-58, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19361851

RESUMO

In response to replication stress, the Mec1/ATR and SUMO pathways control stalled- and damaged-fork stability. We investigated the S phase response at forks encountering a broken template (termed the terminal fork). We show that double-strand break (DSB) formation can locally trigger dormant origin firing. Irreversible fork resolution at the break does not impede progression of the other fork in the same replicon (termed the sister fork). The Mre11-Tel1/ATM response acts at terminal forks, preventing accumulation of cruciform DNA intermediates that tether sister chromatids and can undergo nucleolytic processing. We conclude that sister forks can be uncoupled during replication and that, after DSB-induced fork termination, replication is rescued by dormant origin firing or adjacent replicons. We have uncovered a Tel1/ATM- and Mre11-dependent response controlling terminal fork integrity. Our findings have implications for those genome instability syndromes that accumulate DNA breaks during S phase and for forks encountering eroding telomeres.


Assuntos
Replicação do DNA , Replicon , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Genes Dev ; 30(10): 1211-24, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27222517

RESUMO

To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas Culina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
J Cell Sci ; 134(6)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33622771

RESUMO

In budding yeast and mammals, double-strand breaks (DSBs) trigger global chromatin mobility together with rapid phosphorylation of histone H2A over an extensive region of the chromatin. To assess the role of H2A phosphorylation in this response to DNA damage, we have constructed strains where H2A has been mutated to the phosphomimetic H2A-S129E. We show that mimicking H2A phosphorylation leads to an increase in global chromatin mobility in the absence of DNA damage. The intrinsic chromatin mobility of H2A-S129E is not due to downstream checkpoint activation, histone degradation or kinetochore anchoring. Rather, the increased intrachromosomal distances observed in the H2A-S129E mutant are consistent with chromatin structural changes. Strikingly, in this context the Rad9-dependent checkpoint becomes dispensable. Moreover, increased chromatin dynamics in the H2A-S129E mutant correlates with improved DSB repair by non-homologous end joining and a sharp decrease in interchromosomal translocation rate. We propose that changes in chromosomal conformation due to H2A phosphorylation are sufficient to modulate the DNA damage response and maintain genome integrity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA , Histonas/genética , Histonas/metabolismo , Humanos , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nat Rev Mol Cell Biol ; 17(6): 333, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27116926
19.
Mol Cell ; 57(4): 577-581, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25699706

RESUMO

Double-strand breaks (DSBs) threaten chromosome integrity. The most accurate repair of DSBs is by homologous recombination (HR), catalyzed by recombination proteins such as Rad51. Three papers in this issue of Molecular Cell (Fasching et al., 2015; Kaur et al., 2015; Tang et al., 2015) now reveal the role of three of these proteins in budding yeast: Sgs1 (BLM homolog), Top3 (TOPIIIα homolog), and Rmi1. They demonstrate several steps where all three proteins act together, and find additional functions of the Top3-Rmi1 subcomplex that are critical for the completion of meiosis.


Assuntos
Segregação de Cromossomos , DNA Topoisomerases Tipo I/fisiologia , Proteínas de Ligação a DNA/fisiologia , Recombinação Homóloga/fisiologia , Meiose/genética , Modelos Genéticos , Rad51 Recombinase/fisiologia , RecQ Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Humanos
20.
Nucleic Acids Res ; 49(7): 3932-3947, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33772579

RESUMO

Palindromic sequences are a potent source of chromosomal instability in many organisms and are implicated in the pathogenesis of human diseases. In this study, we investigate which nucleases are responsible for cleavage of the hairpin and cruciform structures and generation of double-strand breaks at inverted repeats in Saccharomyces cerevisiae. We demonstrate that the involvement of structure-specific nucleases in palindrome fragility depends on the distance between inverted repeats and their transcriptional status. The attack by the Mre11 complex is constrained to hairpins with loops <9 nucleotides. This restriction is alleviated upon RPA depletion, indicating that RPA controls the stability and/or formation of secondary structures otherwise responsible for replication fork stalling and DSB formation. Mus81-Mms4 cleavage of cruciforms occurs at divergently but not convergently transcribed or nontranscribed repeats. Our study also reveals the third pathway for fragility at perfect and quasi-palindromes, which involves cruciform resolution during the G2 phase of the cell cycle.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Fúngico/metabolismo , Sequências Repetidas Invertidas , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Conformação de Ácido Nucleico , Elementos Estruturais de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA