Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt C): 112233, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688643

RESUMO

The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 µg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.


Assuntos
Disruptores Endócrinos , Sulfonas , Animais , Compostos Benzidrílicos/toxicidade , Disponibilidade Biológica , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Masculino , Fenóis , Valores de Referência , Sulfonas/toxicidade , Suínos
2.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769238

RESUMO

For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.


Assuntos
Compostos Benzidrílicos/toxicidade , Raios gama/efeitos adversos , Células Intersticiais do Testículo/metabolismo , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Lesões Experimentais por Radiação/metabolismo , Animais , Feminino , Células HeLa , Humanos , Células Intersticiais do Testículo/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Lesões Experimentais por Radiação/patologia
3.
PLoS Genet ; 13(11): e1007049, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107990

RESUMO

The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis.


Assuntos
Androgênios/fisiologia , Encéfalo/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Diferenciação Sexual , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/fisiologia , Di-Hidrotestosterona/farmacologia , Feminino , Flutamida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/fisiologia
4.
Hum Reprod ; 32(3): 631-642, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073973

RESUMO

STUDY QUESTION: How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER: Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY: The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION: In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS: Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE: Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA: N/A. LIMITATIONS REASON FOR CAUTION: Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the Université Paris Diderot-Paris 7 and Université Paris-Sud, CEA, INSERM, and Agence de la Biomédecine. The authors declare no conflict of interest.


Assuntos
Células Germinativas Embrionárias/metabolismo , Meiose/fisiologia , Ovário/embriologia , Testículo/embriologia , Animais , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Camundongos , Oogônios/citologia , Oogônios/metabolismo , Ovário/metabolismo , Transdução de Sinais/fisiologia , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/metabolismo
5.
PLoS Genet ; 9(9): e1003784, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068956

RESUMO

Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB). This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1 (-/-) spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob (-/-) meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination.


Assuntos
Pareamento Cromossômico/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Meiose/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Células Germinativas , Humanos , Masculino , Camundongos , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Espermatócitos/metabolismo
6.
Development ; 138(24): 5393-402, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22071108

RESUMO

The mechanisms regulating germ line sex determination and meiosis initiation are poorly understood. Here, we provide evidence for the involvement of homeobox Msx transcription factors in foetal meiosis initiation in mammalian germ cells. Upon meiosis initiation, Msx1 and Msx2 genes are strongly expressed in the foetal ovary, possibly stimulated by soluble factors found there: bone morphogenetic proteins Bmp2 and Bmp4, and retinoic acid. Analysis of Msx1/Msx2 double mutant embryos revealed a majority of undifferentiated germ cells remaining in the ovary and, importantly, a decrease in the number of meiotic cells. In vivo, the Msx1/Msx2 double-null mutation prevented full activation of Stra8, a gene required for meiosis. In F9 cells, Msx1 can bind to Stra8 regulatory sequences and Msx1 overexpression stimulates Stra8 transcription. Collectively, our data demonstrate for the first time that some homeobox genes are required for meiosis initiation in the female germ line.


Assuntos
Proteínas de Homeodomínio/fisiologia , Fator de Transcrição MSX1/fisiologia , Meiose/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Camundongos , Mutação , Técnicas de Cultura de Órgãos , Ovário/fisiologia , Proteínas/metabolismo , Tretinoína/metabolismo , Tretinoína/fisiologia
7.
Mol Hum Reprod ; 20(10): 960-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082981

RESUMO

We identified three doublesex and mab-3-related transcription factors (DMRT) that were sexually differentially expressed in human fetal gonads and present in the ovaries at the time of meiotic initiation. These were also identified in murine embryonic female germ cells. Among these, we focused on DMRTA2 (DMRT5), whose function is unknown in the developing gonads, and clarified its role in human female fetal germ cells, using an original xenograft model. Early human fetal ovaries (8-11 weeks post-fertilization) were grafted into nude mice. Grafted ovaries developed normally, with no apparent overt changes, when compared with ungrafted ovaries at equivalent developmental stages. Appropriate germ cell density, mitotic/meiotic transition, markers of meiotic progression and follicle formation were evident. Four weeks after grafting, mice were treated with siRNA, specifically targeting human DMRTA2 mRNA. DMRTA2 inhibition triggered an increase in undifferentiated FUT4-positive germ cells and a decrease in the percentage of meiotic γH2AX-positive germ cells, when compared with mice that were injected with control siRNA. Interestingly, the expression of markers associated with pre-meiotic germ cell differentiation was also impaired, as was the expression of DMRTB1 (DMRT6) and DMRTC2 (DMRT7). This study reveals, for the first time, the requirement of DMRTA2 for normal human female embryonic germ cell development. DMRTA2 appears to be necessary for proper differentiation of oogonia, prior to entry into meiosis, in the human species. Additionally, we developed a new model of organ xenografting, coupled with RNA interference, which provides a useful tool for genetic investigations of human germline development.


Assuntos
Fucosiltransferases/metabolismo , Histonas/metabolismo , Antígenos CD15/metabolismo , Ovário/transplante , Óvulo/citologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos SCID , Ovário/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/biossíntese , Transplante Heterólogo
8.
Reproduction ; 147(4): R119-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497529

RESUMO

Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk.


Assuntos
Experimentação Animal/normas , Disruptores Endócrinos/toxicidade , Roedores , Testes de Toxicidade/normas , Animais , Humanos , Masculino , Camundongos , Modelos Animais , Ratos , Medição de Risco , Testículo/efeitos dos fármacos , Testes de Toxicidade/métodos
9.
Brain ; 136(Pt 1): 132-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23365095

RESUMO

Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic testosterone analogue 7α-methyl-19-nortestosterone, which has been developed for long-term male contraception and androgen replacement therapy in hypogonadal males and does not stimulate prostate growth, also efficiently promoted myelin repair. These data establish the efficacy of androgens as remyelinating agents and qualify the brain androgen receptor as a promising drug target for remyelination therapy, thus providing the preclinical rationale for a novel therapeutic use of androgens in males with multiple sclerosis.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Androgênios/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Receptores Androgênicos/genética , Testosterona/farmacologia , Testosterona/uso terapêutico
10.
Cells ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626738

RESUMO

Claude Bernard is the first and one of the very few French scientists to have been honored with a national funeral [...].

11.
Dev Biol ; 346(2): 320-30, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20707993

RESUMO

In mammals, early fetal germ cells are unique in their ability to initiate the spermatogenesis or oogenesis programs dependent of their somatic environment. In mice, female germ cells enter into meiosis at 13.5 dpc whereas in the male, germ cells undergo mitotic arrest. Recent findings indicate that Cyp26b1, a RA-degrading enzyme, is a key factor preventing initiation of meiosis in the fetal testis. Here, we report evidence for additional testicular pathways involved in the prevention of fetal meiosis. Using a co-culture model in which an undifferentiated XX gonad is cultured with a fetal or neonatal testis, we demonstrated that the testis prevented the initiation of meiosis and induced male germ cell differentiation in the XX gonad. This testicular effect disappeared when male meiosis starts in the neonatal testis and was not directly due to Cyp26b1 expression. Moreover, neither RA nor ketoconazole, an inhibitor of Cyp26b1, completely prevented testicular inhibition of meiosis in co-cultured ovary. We found that secreted factor(s), with molecular weight greater than 10 kDa contained in conditioned media from cultured fetal testes, inhibited meiosis in the XX gonad. Lastly, although both Sertoli and interstitial cells inhibited meiosis in XX germ cells, only interstitial cells induced mitotic arrest in germ cell. In conclusion, our results demonstrate that male germ cell determination is supported by additional non-retinoid secreted factors inhibiting both meiosis and mitosis and produced by the testicular somatic cells during fetal and neonatal life.


Assuntos
Meiose , Testículo/embriologia , Animais , Diferenciação Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Feto/citologia , Feto/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Mitose , Ácido Retinoico 4 Hidroxilase , Testículo/citologia , Testículo/metabolismo
12.
Dev Biol ; 342(1): 74-84, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20346356

RESUMO

During testis development, proliferation and death of gonocytes are highly regulated to establish a standard population of adult stem spermatogonia that maintain normal spermatogenesis. As Transforming Growth Factor beta (TGFbeta) can regulate proliferation and apoptosis, we investigated its expression and functions during testis development. We show that TGFbeta2 is only expressed in quiescent gonocytes and decreases gonocyte proliferation in vitro. To study the functions of TGFbeta2, we developed conditional mice that invalidate the TGFbeta receptor type II in germ cells. Most of the knock-out animals die during fetal life, but the surviving adults show a reduced pool of spermatogonial stem/progenitor cells and become sterile with time. Using an organ culture system mimicking in vivo development, we show higher proportions of proliferating and apoptotic gonocytes from 13.5 dpc until 1 dpp, suggesting a reduction of germinal quiescence in these animals. Conversely, a 24-hour TGFbeta2-treatment of explanted wild-type testes, isolated every day from 13.5 dpc until 1 dpp, increased the duration of quiescence. These data show that the TGFbeta signaling pathway plays a physiological role during testis development by acting directly as a negative regulator of the fetal and neonatal germ cell proliferation, and indicate that the TGFbeta signaling pathway might regulate the duration of germ cell quiescence and is necessary to maintain adult spermatogenesis.


Assuntos
Células Germinativas/metabolismo , Transdução de Sinais/genética , Espermatogênese/genética , Espermatogônias/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Apoptose/genética , Proliferação de Células , Fertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteínas Serina-Treonina Quinases/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Espermatogônias/citologia , Células-Tronco/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Environ Health Perspect ; 117(1): 32-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165384

RESUMO

BACKGROUND: Several studies have described an increasing frequency of male reproductive disorders, which may have a common origin in fetal life and which are hypothesized to be caused by endocrine disruptors. Phthalate esters represent a class of environmental endocrine-active chemicals known to disrupt development of the male reproductive tract by decreasing testosterone production in the fetal rat. OBJECTIVES: Using the organ culture system we developed previously, we investigated the effects on the development of human fetal testis of one phthalate--mono-2-ethylhexyl phthalate (MEHP)--an industrial chemical found in many products, which has been incriminated as a disruptor of male reproductive function. METHODS: Human fetal testes were recovered during the first trimester (7-12 weeks) of gestation, a critical period for testicular differentiation, and cultured for 3 days with or without MEHP in basal conditions or stimulated with luteinizing hormone (LH). RESULTS: Whatever the dose, MEHP treatment had no effect on basal or LH-stimulated testosterone produced by the human fetal testis in vitro, although testosterone production can be modulated in our culture system. MEHP (10(-4) M) did not affect proliferation or apoptosis of Sertoli cells, but it reduced the mRNA expression of anti-Müllerian hormone. MEHP (10(-4) M) reduced the number of germ cells by increasing their apoptosis, measured by the detection of caspase-3-positive germ cells, without modification of their proliferation. CONCLUSIONS: This is the first experimental demonstration that phthalates alter the development of the germ cell lineage in humans. However, in contrast to results observed in the rat, phthalates did not affect steroidogenesis.


Assuntos
Células Germinativas/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Testículo/efeitos dos fármacos , Testosterona/biossíntese , Células Germinativas/citologia , Humanos , Masculino , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/citologia , Testículo/embriologia , Testículo/metabolismo
15.
Hum Reprod ; 24(3): 670-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19088112

RESUMO

BACKGROUND: We have previously shown that male human fetal germ cells are highly radiosensitive and that their death depends on p53 activation. Male germ cell apoptosis was initiated with doses as low as 0.1 Gy and was prevented by pifithrin alpha, a p53 inhibitor. In this study, we investigated the radiosensitivity of early female and male fetal proliferating germ cells. METHODS AND RESULTS: Both male and female fetal germ cells displayed a similar number of gamma H2AX foci in response to ionizing radiation (IR). In organ culture of human fetal ovaries, the germ cells underwent apoptosis only when exposed to high doses of IR (1.5 Gy and above). Accumulation of p53 was detected in irradiated male human fetal germ cells but not in female ones. Inhibition of p53 with pifithrin alpha did not affect oogonia apoptosis following irradiation. IR induced apoptosis similarly in mouse fetal ovaries in organ culture and in vivo during oogonial proliferation. Germ cell survival in testes from p53 knockout or p63 knockout mice exposed to IR was better than wild-type, whereas female germ cell survival was unaffected by p53 or p63 knockout. CONCLUSIONS: These findings show that pre-meiotic male and female fetal germ cells behave differently in response to a genotoxic stress--irradiation--with oogonia being less sensitive and undergoing p53-independent apoptosis.


Assuntos
Apoptose , Células Germinativas/citologia , Células Germinativas/efeitos da radiação , Fatores Sexuais , Animais , Benzotiazóis/farmacologia , Relação Dose-Resposta à Radiação , Feminino , Genes p53 , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos/métodos , Radiação Ionizante , Tolueno/análogos & derivados , Tolueno/farmacologia
16.
Environ Health Perspect ; 127(10): 106001, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31617754

RESUMO

BACKGROUND: The substitution of bisphenol A (BPA) by bisphenol B (BPB), a very close structural analog, stresses the need to assess its potential endocrine properties. OBJECTIVE: This analysis aimed to investigate whether BPB has endocrine disruptive properties in humans and in wildlife as defined by the World Health Organization (WHO) definition used in the regulatory field, that is, a) adverse effects, b) endocrine activity, and c) plausible mechanistic links between the observed endocrine activity and adverse effects. METHODS: We conducted a systematic review to identify BPB adverse effects and endocrine activities by focusing on animal models and in vitro mechanistic studies. The results were grouped by modality (estrogenic, androgenic, thyroid hormone, steroidogenesis-related, or other endocrine activities). After critical analysis of results, lines of evidence were built using a weight-of-evidence approach to establish a biologically plausible link. In addition, the ratio of BPA to BPB potency was reported from studies investigating both bisphenols. RESULTS: Among the 36 articles included in the analysis, 3 subchronic studies consistently reported effects of BPB on reproductive function. In rats, the 28-d and 48-week studies showed alteration of spermatogenesis associated with a lower height of the seminiferous tubules, the alteration of several sperm parameters, and a weight loss for the testis, epididymis, and seminal vesicles. In zebrafish, the results of a 21-d reproductive study demonstrated that exposed fish had a lower egg production and a lower hatching rate and viability. The in vitro and in vivo mechanistic data consistently demonstrated BPB's capacity to decrease testosterone production and to exert an estrogenic-like activity similar to or greater than BPA's, both pathways being potentially responsible for spermatogenesis impairment in rats and fish. CONCLUSION: The available in vivo, ex vivo, and in vitro data, although limited, coherently indicates that BPB meets the WHO definition of an endocrine disrupting chemical currently used in a regulatory context. https://doi.org/10.1289/EHP5200.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Animais , Humanos , Masculino , Espermatozoides , Testículo , Testosterona
17.
Biomolecules ; 9(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561560

RESUMO

In female mammals, germ cells enter meiosis in the fetal ovaries, while in males, meiosis is prevented until postnatal development. Retinoic acid (RA) is considered the main inducer of meiotic entry, as it stimulates Stra8 which is required for the mitotic/meiotic switch. In fetal testes, the RA-degrading enzyme CYP26B1 prevents meiosis initiation. However, the role of endogenous RA in female meiosis entry has never been demonstrated in vivo. In this study, we demonstrate that some effects of RA in mouse fetal gonads are not recapitulated by the invalidation or up-regulation of CYP26B1. In organ culture of fetal testes, RA stimulates testosterone production and inhibits Sertoli cell proliferation. In the ovaries, short-term inhibition of RA-signaling does not decrease Stra8 expression. We develop a gain-of-function model to express CYP26A1 or CYP26B1. Only CYP26B1 fully prevents STRA8 induction in female germ cells, confirming its role as part of the meiotic prevention machinery. CYP26A1, a very potent RA degrading enzyme, does not impair the formation of STRA8-positive cells, but decreases Stra8 transcription. Collectively, our data reveal that CYP26B1 has other activities apart from metabolizing RA in fetal gonads and suggest a role of endogenous RA in amplifying Stra8, rather than being the initial inducer of Stra8. These findings should reactivate the quest to identify meiotic preventing or inducing substances.


Assuntos
Gônadas/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Gônadas/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Receptores do Ácido Retinoico/metabolismo , Testosterona/análise , Testosterona/biossíntese
18.
Mol Cell Endocrinol ; 475: 10-28, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577943

RESUMO

Proper cyclicity is essential to reach successful optimal fertility. In rats and mice, BPA exposure is repeatedly and reliably reported to show an adverse effect on the estrous cycle after exposures at different life stages. In humans, a possible association between modifications of menstrual cycle characteristics (e.g. length of the cycle, duration of menstrual bleeding) and sub-fecundity or spontaneous abortion has been observed. Alterations of ovarian cyclicity can therefore be definitely considered as an adverse health outcome. As a prerequisite for the EU REACH regulation to identify a substance as an endocrine disruptor and a SVHC,1 the proof has to be established that the substance can have deleterious health effects resulting from an endocrine mode of action. This review provides an overview of the currently available data allowing to conclude that the adverse effects of BPA exposure on ovarian cyclicity is mediated by an endocrine mode of action.


Assuntos
Rotas de Resultados Adversos , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Ciclo Estral/efeitos dos fármacos , Fenóis/toxicidade , Animais , Bases de Dados de Compostos Químicos , Humanos
19.
PLoS One ; 13(1): e0191934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29385186

RESUMO

BACKGROUND: Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 µM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. METHODS: Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 µM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 µM BPA (~ 500 µg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 µM and 0.038 µM respectively. Mice grafted with second trimester testes received 0.5 and 50 µg/kg/day BPA by oral gavage for 5 weeks. RESULTS: With first trimester human testes, using the hFeTA model, 10 µM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. CONCLUSIONS: Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures.


Assuntos
Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Células Intersticiais do Testículo/efeitos dos fármacos , Fenóis/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/citologia , Testículo/embriologia , Testosterona/sangue
20.
Mol Cell Endocrinol ; 475: 4-9, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-29426018

RESUMO

BPA is one of the most investigated substances for its endocrine disruptor (ED) properties and it is at the same time in the center of many ED-related controversies. The analysis on how BPA fits to the regulatory identification as an ED is a challenge in terms of methodology. It is also a great opportunity to test the regulatory framework with a uniquely data-rich substance and learn valuable lessons for future cases. From this extensive database, it was considered important to engage in a detailed analysis so as to provide specific and strong evidences of ED while reflecting accurately the complexity of the response as well the multiplicity of adverse effects. An appropriate delineation of the scope of the analysis was therefore critical. Four effects namely, alterations of estrous cyclicity, mammary gland development, brain development and memory function, and metabolism, were considered to provide solid evidence of ED-mediated effects of BPA.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Controle Social Formal , Animais , Compostos Benzidrílicos/química , Disruptores Endócrinos/química , Humanos , Fenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA