Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Math Biol ; 64(1-2): 361-401, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21437671

RESUMO

The structure of an underlying tissue network has a strong impact on cell dynamics. If, in addition, cells alter the network by mechanical and chemical interactions, their movement is called mesenchymal. Important examples for mesenchymal movement include fibroblasts in wound healing and metastatic tumour cells. This paper is focused on the latter. Based on the anisotropic biphasic theory of Barocas and Tranquillo, which models a fibre network and interstitial solution as two-component fluid, a mathematical model for the interactions of cells with a fibre network is developed. A new description for fibre reorientation is given and orientation-dependent proteolysis is added to the model. With respect to cell dynamics, the equation, based on anisotropic diffusion, is extended by haptotaxis and chemotaxis. The chemoattractants are the solute network fragments, emerging from proteolysis, and the epidermal growth factor which may guide the cells to a blood vessel. Moreover the cell migration is impeded at either high or low network density. This new model enables us to study chemotactic cell migration in a complex fibre network and the consequential network deformation. Numerical simulations for the cell migration and network deformation are carried out in two space dimensions. Simulations of cell migration in underlying tissue networks visualise the impact of the network structure on cell dynamics. In a scenario for fibre reorientation between cell clusters good qualitative agreement with experimental results is achieved. The invasion speeds of cells in an aligned and an isotropic fibre network are compared.


Assuntos
Quimiotaxia , Mesoderma/patologia , Modelos Biológicos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes , Simulação por Computador , Humanos
2.
Transfus Med Hemother ; 36(3): 162-167, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21113258

RESUMO

The Bloodgen project was funded by the European Commission between 2003 and 2006, and involved academic blood centres, universities, and Progenika Biopharma S.A., a commercial supplier of genotyping platforms that incorporate glass arrays. The project has led to the development of a commercially available product, BLOODchip, that can be used to comprehensively genotype an individual for all clinically significant blood groups. The intention of making this system available is that blood services and perhaps even hospital blood banks would be able to obtain extended information concerning the blood group of routine blood donors and vulnerable patient groups. This may be of significant use in the current management of multi-transfused patients who become alloimmunised due to incomplete matching of blood groups. In the future it can be envisaged that better matching of donor-patient blood could be achieved by comprehensive genotyping of every blood donor, especially regular ones. This situation could even be extended to genotyping every individual at birth, which may prove to have significant long-term health economic benefits as it may be coupled with detection of inborn errors of metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA