Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Inorg Chem ; 61(13): 5224-5233, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35324183

RESUMO

In this work, we report on the structural properties of alkali hydrido-closo-(car)borates, a promising class of solid-state electrolyte materials, using high-pressure and temperature-dependent X-ray diffraction experiments combined with density functional theory (DFT) calculations. The mechanical properties are determined via pressure-dependent diffraction studies and DFT calculations; the shear moduli appear to be very low for all studied compounds, revealing their high malleability (that can be beneficial for the manufacturing and stable cycling of all-solid-state batteries). The thermodiffraction experiments also reveal a high coefficient of thermal expansion for these materials. We discover a pressure-induced phase transition for K2B12H12 from Fm3̅ to Pnnm symmetry around 2 GPa. A temperature-induced phase transition for Li2B10H10 was also observed for the first time by thermodiffraction, and the crystal structure determined by combining experimental data and DFT calculations. Interestingly, all phases of the studied compounds (including newly discovered high-pressure and high-temperature phases) may be related via a group-subgroup relationship, with the notable exception of the room-temperature phase of Li2B10H10.

2.
Molecules ; 26(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34946503

RESUMO

About 25 years ago, Bogdanovic and Schwickardi (B. Bogdanovic, M. Schwickardi: J. Alloys Compd. 1-9, 253 (1997) discovered the catalyzed release of hydrogen from NaAlH4. This discovery stimulated a vast research effort on light hydrides as hydrogen storage materials, in particular boron hydrogen compounds. Mg(BH4)2, with a hydrogen content of 14.9 wt %, has been extensively studied, and recent results shed new light on intermediate species formed during dehydrogenation. The chemistry of B3H8-, which is an important intermediate between BH4- and B12H122-, is presented in detail. The discovery of high ionic conductivity in the high-temperature phases of LiBH4 and Na2B12H12 opened a new research direction. The high chemical and electrochemical stability of closo-hydroborates has stimulated new research for their applications in batteries. Very recently, an all-solid-state 4 V Na battery prototype using a Na4(CB11H12)2(B12H12) solid electrolyte has been demonstrated. In this review, we present the current knowledge of possible reaction pathways involved in the successive hydrogen release reactions from BH4- to B12H122-, and a discussion of relevant necessary properties for high-ionic-conduction materials.

3.
J Phys Chem A ; 124(8): 1619-1633, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-31999454

RESUMO

MFX (M = Ca, Ba, Sr, Pb and X = Cl, Br, I) compounds have received considerable attention due to their technological application as X-ray detectors, pressure sensors, and optical data storage materials, when doped with rare-earth ions. MFX compounds belong to the class of layered materials with a tetragonal Matlockite crystal structure, characterized by weakly stacked double-halide layers along the crystallographic c-axis. These layers predominantly determine phase transitions, elastic, and mechanical properties. However, the correct description of the lattice parameter c is a challenge for most standard DFT functionals, which tend to overestimate the lattice parameter c. Because of the weak interactions between the halide layers, dispersion-corrected functionals seem to be a better choice. We investigated 11 different inorganic layered MFX compounds for which experimental data are available, with standard and dispersion-corrected functionals to assess their performance in reproducing the lattice parameter c, structural, and vibrational properties of the MFX compounds. Our results revealed that these functionals do not describe the weak interactions between the halide layers in a balanced way. Therefore, we modified Grimme's popular DFT-D2 dispersion correction scheme in two different ways by (i) replacing the dispersion coefficients and van der Waals radii with those of noble gas atoms or (ii) increasing the van der Waals radii of the MFX atoms up to 40%. Comparison with the available experimental data revealed that the latter approach applied to the PBE (Perdew-Burke-Ernzerhof)-D2 functional with 30% increased van der Waals radii, which we coined PBE-D2* (Srvdw 1.30) is best suited to fine-tune the description of the weak interlayer interactions in MFX compounds, thus significantly improving the description of their structural, vibrational, and mechanical properties. Work is in progress applying this new, computationally inexpensive scheme to other inorganic layered compounds and periodic systems with weakly stacked layers.

4.
Chemphyschem ; 20(15): 1967-1977, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31063616

RESUMO

We report the thermodynamic stabilities and the intrinsic strengths of three-center-two-electron B-B-B and B-Hb -B bonds ( Hb : bridging hydrogen), and two-center-two-electron B-Ht bonds ( Ht : terminal hydrogen) which can be served as a new, effective tool to determine the decisive role of the intermediates of hydrogenation/dehydrogenation reactions of borohydride. The calculated heats of formation were obtained with the G4 composite method and the intrinsic strengths of B-B-B, B-Hb -B, and B-Ht bonds were derived from local stretching force constants obtained at the B3LYP-D2/cc-pVTZ level of theory for 21 boron-hydrogen compounds, including 19 intermediates. The Quantum Theory of Atoms in Molecules (QTAIM) was used to deepen the inside into the nature of B-B-B, B-Hb -B, and B-Ht bonds. We found that all of the experimentally identified intermediates hindering the reversibility of the decomposition reactions are thermodynamically stable and possess strong B-B-B, B-Hb -B, and B-Ht bonds. This proves that thermodynamic data and intrinsic B-B-B, B-Hb -B, and B-Ht bond strengths form a new, effective tool to characterize new (potential) intermediates and to predict their role for the reversibility of the hydrogenation/dehydrogenation reactions.

5.
Phys Chem Chem Phys ; 21(40): 22456-22466, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31580343

RESUMO

Lithium borohydride is a promising lithium ion conductor for all-solid-state batteries. However, the compound only exhibits high ionic conductivity at elevated temperatures, typically above 110 °C. It was shown that the addition of oxides such as silica or alumina increases the room temperature ionic conductivity by 3 orders of magnitude. The origin of this remarkable effect is not yet well understood. Here, we investigate the influence of oxide surface groups on the ionic conductivity of LiBH4/SiO2 nanocomposites. We systematically varied the density and nature of the surface groups of mesoporous silica by heat treatment at different temperatures, or surface functionalization, and subsequently prepared LiBH4/SiO2 nanocomposites by melt infiltration. The ionic conductivity is strongly influenced by the heat treatment temperature, hence the density of the free surface silanol groups. Replacing some of the silanol groups with hydrophobic surface groups resulted in an order of magnitude reduction of the room temperature ionic conductivity, suggesting that their presence is crucial to obtain high ionic conductivity in the nanocomposites. This systematic study and insight provide a basis for further exploration of the impact of surface groups, and for the rational design of novel solid-state nanocomposite electrolytes via interface engineering.

6.
J Phys Chem A ; 123(13): 2881-2887, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30844275

RESUMO

The use of the Sm2+ luminescence properties in numerous applications appeals for a better understanding of its electronic structure. This work compares luminescence data and crystal field parameters from 31 Sm2+-containing compounds to assess the effects of the crystal field on its energy levels. In particular, the relationship between the 5D0-7F0 and 5D0-7F1 transition energies is analyzed and compared with previously published data for the isoelectronic Eu3+. It appears that for Sm2+, in contrast to Eu3+, the energy of the 5D0 state cannot be considered to be constant and implies the involvement of an extra state (presumably the 4f55d1 level) in the mixing of the 4f6 states. On the other side, the total crystal field strength is correlated to the splitting of the 7F1 states for both Sm2+ and Eu3+ in lower symmetry environments. The plot of the 5D0-7F0 energy as a function of the 7F1 splitting clearly evidences the mixing of the 4f6 state with the environment-sensitive 4f55d1 state for Sm2+, which is finally confirmed by the discrepancy of the ratio between the 5D1 and 7F1 splittings from its theoretical value in the absence of any mixing with the 4f55d1 state.

7.
J Phys Chem A ; 123(9): 1807-1813, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30758966

RESUMO

The closoborane and their derivatives have attracted high interest due to their superionic conductivity. Very recently, high ionic conductivities have been reported for compounds containing the closoborane ion B12H122-. In this work, we address halogen-substituted ions B12H nX(12- n)2- ( n = 0-3, 6, 9-12 and X = F, Cl, Br) using DFT calculations to probe the structures, the chemical stability, and the electrochemical stability, as well as spectroscopic properties in view of potential future applications. Considering the theoretical reaction n/12 B12H122- + (12- n)/12 B12X122- → B12H nX(12- n)2-, it appears that for X = Cl and Br the compounds with n = 6 are stabilized by about 100 kJ/mol. The calculation of the vertical detachment energy (which is indirectly related to the electrochemical stability) shows an increasing stability with increasing halogen content. These results suggest that, for practical applications, it is likely that a partially halogenated ion offers the best compromise. The calculations of vibrational properties and NMR chemical shifts also reveal several systematic trends, which are discussed and compared to available literature values.

8.
Chimia (Aarau) ; 73(11): 868-873, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753067

RESUMO

Metal borohydrides have been studied since the beginning of this century as potential hydrogen storage materials due to their high gravimetric hydrogen content. Many new compounds have been synthesized and characterized, however to date the main problem are the kinetics of dehydrogenation and rehydrogenation. In this review we address thermodynamical and chemical properties of boron hydrogen compounds which come into play for hydrogen storage and which must be considered in the search for efficient catalysts. More recently, closo and nido hydridoborate and related closo hydridocarborate compounds have been identified as good ionic conductors for all-solid-state lithium or sodium batteries. The properties of these fascinating and very promising compounds for battery applications are illustrated with recent literature results.

9.
Phys Chem Chem Phys ; 19(44): 30157-30165, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29104996

RESUMO

Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9 : 1 and 3 : 1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in situ infrared spectroscopy (in situ FTIR). Upon heating, fluoride substituted LiBH4 forms (LiBH4-xFx) and decomposition occurs, releasing diborane and solid decomposition products. The decomposition temperature is reduced more than fourfold relative to the individual constituents, with decomposition commencing at T = 80 °C. The degree of fluoride substitution is quantified by sequential Rietveld refinement and shows a selective manner of substitution. In situ FTIR experiments reveal formation of bands originating from LiBH4-xFx. Formation of LiF and observation of diborane release implies that the decomposing materials have a composition that facilitates formation of diborane and LiF, i.e. LiBH4-xFx (LiBH3F). An alternative approach for fluoride substitution was performed, by addition of Et3N·3HF to LiBH4, yielding extremely unstable products. Spontaneous decomposition indicates fluoride substitution to have occurred. From our point of view, this is the most significant destabilization effect seen for borohydride materials so far.

10.
Inorg Chem ; 55(14): 7090-7, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27351948

RESUMO

Borohydrides have attained high interest in the past few years due to their high volumetric and gravimetric hydrogen content. Synthesis of di/trimetallic borohydride is a way to alter the thermodynamics of hydrogen release from borohydrides. Previously reported preparations of M(BH4)2 involved chloride containing species such as SrCl2. The presence of residual chloride (or other halide) ions in borohydrides may change their thermodynamic behavior and their decomposition pathway. Pure monometallic borohydrides are needed to study decomposition products without interference from halide impurities. They can also be used as precursors for synthesizing di/trimetallic borohydrides. In this paper we present a way to synthesize halide free alkaline earth metal (Sr, Ba) and europium borohydrides starting with the respective hydrides as precursors. Two novel high temperature polymorphs of Sr and Eu borohydrides and four polymorphs of Ba borohydride have been characterized by synchrotron X-ray powder diffraction, thermal analysis, and Raman and infrared spectroscopy and supported by periodic DFT calculations. The decomposition routes of these borohydrides have also been investigated. In the case of the decomposition of strontium and europium borohydrides, the metal borohydride hydride (M(BH4)H3, M = Sr, Eu) is observed and characterized. Periodic DFT calculations performed on room temperature Ba(BH4)2 revealed the presence of bidentate and tridentate borohydrides.

11.
Phys Chem Chem Phys ; 16(42): 23260-73, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25259377

RESUMO

Backscattered Raman optical activity (ROA) spectra are measured for Δ- and Λ-tris-(ethylenediamine)rhodium(III) chloride in aqueous solution. In addition, the spectra of the four possible conformers in the Λ configuration are investigated by ab initio calculations. The Λ(δδδ) conformer is in best agreement with experimental spectra and examined in more details. The two most stable conformers according to the calculations are not compatible with the experimental ROA spectrum. Insights into the origin of observed band intensities are obtained by means of group coupling matrices. The influence of the first solvation shell is explored via an ab initio molecular dynamics simulation. Taking explicit solvent molecules into account further improves the agreement between calculation and experiment. Analysis of selected normal modes using group coupling matrices shows that solvent molecules lead to normal mode rotation and thus contribute to the ROA intensity, whereas the contribution of the Rh can be neglected.

13.
Chimia (Aarau) ; 68(12): 893-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26508615

RESUMO

To celebrate the International Year of Crystallography among the general public, a consortium of chemists, physicists and crystallographers of the University of Geneva organised in Spring 2014 an incentive crystal growth contest for Geneva scholars aged 4 to 19. Starting from a kit containing a salt and user instructions, classes had to prepare a crystal that met specific criteria according to their category of age. The composition of the salt - potassium dihydrogen phosphate (KDP) - was only disclosed to the participants during the final Awards Ceremony. This contest positively exceeded our expectations with almost 100 participating classes (ca. 1800 participants) and 54 specimens received over all categories.

14.
J Phys Chem C Nanomater Interfaces ; 126(45): 19336-19345, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36425001

RESUMO

Advanced instrumentation and modern analysis tools such as transmission electron microscopy (TEM) have led to phenomenal progress in understanding crystallization, in particular from solution, which is a prerequisite for the design-based preparation of a target crystal. Nevertheless, little has been understood about the crystallization pathway under high-temperature annealing (HTA) conditions. Metal oxide crystals are prominent materials that are usually obtained via HTA. Despite the widespread application of hydro-/solvothermal methods on the laboratory scale, HTA is the preferred method in many industries for the mass production of metal oxide crystals. However, poor control over the morphology and grain sizes of these crystals under extreme HTA conditions limits their applications. Here, applying ex-situ TEM, the transformation of a single amorphous spherical submicrometer precursor particle of SrAl12O19 (SA6) at 1150 °C toward a nanosized thermodynamically favored hexagonal crystal is explored. It is illustrated in real space, step by step, how both kinetic and thermodynamic factors contribute to this faceting and morphology evolution. These results demonstrate a nonclassical nucleation and growth process consisting of densification, crystallite domain formation, oriented attachment, surface nucleation, 2-dimensional (2D) growth, and surface diffusion of the atoms to eventually result in the formation of a hexagonal platelet crystal. The TEM images further delineate a parent crystal driving the crystal lattice and morphological orientation of a network of interconnected platelets.

15.
Dalton Trans ; 51(24): 9556, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35674472

RESUMO

Correction for 'Experimental investigation of Mg(B3H8)2 dimensionality, materials for energy storage applications' by Romain Moury et al., Dalton Trans., 2020, 49, 12168-12173, https://doi.org/10.1039/D0DT02170A.

16.
ACS Appl Mater Interfaces ; 13(46): 55319-55328, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757707

RESUMO

Thermal stability of solid electrolytes and their compatibility with battery electrodes are key factors to ensure stable cycling and high operational safety of all-solid-state batteries. Here, we study the compatibility of a hydroborate solid electrolyte Na4(B12H12)(B10H10) with 3 V-class cathode active materials: NaCrO2, NaMnO2, and NaFeO2. Among these layered sodium transition metal oxide cathodes, NaCrO2 shows the highest thermal compatibility in contact with the hydroborate solid electrolyte up to 525 °C in the discharged state. Furthermore, the electrolyte remains intact upon the internal thermal decomposition of the charged, that is, desodiated, cathode (Na0.5CrO2) above 250 °C, demonstrating the potential for highly safe hydroborate-based all-solid-state batteries with a wide operating temperature range. The experimentally determined onset temperatures of thermal decomposition of Na4(B12H12)(B10H10) in contact with 3 V-class cathodes surpass those of sulfide and selenide solid electrolytes, exceeding previous thermodynamic calculations. Our results also highlight the need to identify relevant decomposition pathways of hydroborates to enable more valid theoretical predictions.

17.
ACS Omega ; 6(47): 31907-31918, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870013

RESUMO

We synthesized and characterized a novel iron(II) aceto EMIM coordination compound, which has a simplified empirical formula Fe4(OAc)10[EMIM]2, in two different hydration forms: as anhydrous monoclinic compound and triclinic dihydrate Fe4(OAc)10[EMIM]2·2H2O. The dihydrate compound is isostructural with recently reported Mn4(OAc)10[EMIM]2·2H2O, while the anhydrate is a superstructure of the Mn counterpart, suggesting the existence of solid solutions. Both new Fe compounds contain chains of Fe2+ octahedrally coordinated exclusively by acetate groups. The EMIM moieties do not interact directly with the Fe2+ and contribute to the structural framework of the compound through van der Waals forces and C-H···O hydrogen bonds with the acetate anions. The compounds have a melting temperature of ∼94 °C; therefore, they can be considered metal-containing ionic liquids. Differential thermal analysis indicates three endothermic transitions associated with melting, structural rearrangement in the molten state at about 157 °C, and finally, thermal decomposition of the Fe4(OAc)10[EMIM]2. Thermogravimetric analyses indicate an ∼72 wt % mass loss during the decomposition at 280-325 °C. The Fe4(OAc)10[EMIM]2 compounds have higher thermal stability than their Mn counterparts and [EMIM][OAc] but lower compared to iron(II) acetate. Temperature-programmed desorption coupled with mass spectrometry shows that the decomposition pathway of the Fe4(OAc)10[EMIM]2 involves four distinct regimes with peak temperatures at 88, 200, 267, and 345 °C. The main species observed in the decomposition of the compound are CH3, H2O, N2, CO, OC-CH3, OH-CO, H3C-CO-CH3, and H3C-O-CO-CH3. Variable-temperature infrared vibrational spectroscopy indicates that the phase transition at 160-180 °C is associated with a reorientation of the acetate ions, which may lead to a lower interaction with the [EMIM]+ before the decomposition of the Fe4(OAc)10[EMIM]2 upon further heating. The Fe4(OAc)10[EMIM]2 compounds are porous, plausibly capable of accommodating other types of molecules.

18.
ACS Appl Energy Mater ; 4(4): 3737-3747, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37153859

RESUMO

In the search for energy storage materials, metal octahydrotriborates, M(B3H8) n , n = 1 and 2, are promising candidates for applications such as stationary hydrogen storage and all-solid-state batteries. Therefore, we studied the thermal conversion of unsolvated Mg(B3H8)2 to BH4 - as-synthesized and in the presence of MgH2. The conversion of our unsolvated Mg(B3H8)2 starts at ∼100 °C and yields ∼22 wt % of BH4 - along with the formation of (closo-hydro)borates and volatile boranes. This loss of boron (B) is a sign of poor cyclability of the system. However, the addition of activated MgH2 to unsolvated Mg(B3H8)2 drastically increases the thermal conversion to 85-88 wt % of BH4 - while simultaneously decreasing the amounts of B-losses. Our results strongly indicate that the presence of activated MgH2 substantially decreases the formation of (closo-hydro)borates and provides the necessary H2 for the B3H8-to-BH4 conversion. This is the first report of a metal octahydrotriborate system to selectively convert to BH4 - under moderate conditions of temperature (200 °C) in less than 1 h, making the MgB3H8-MgH2 system very promising for energy storage applications.

19.
Chemistry ; 16(29): 8707-12, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20583064

RESUMO

The new double-cation Al-Li-borohydride is an attractive candidate material for hydrogen storage due to a very low hydrogen desorption temperature (approximately 70 degrees C) combined with a high hydrogen density (17.2 wt%). It was synthesised by high-energy ball milling of AlCl(3) and LiBH(4). The structure of the compound was determined from image-plate synchrotron powder diffraction supported by DFT calculations. The material shows a unique 3D framework structure within the borohydrides (space group=P-43n, a=11.3640(3) A). The unexpected composition Al(3)Li(4)(BH(4))(13) can be rationalized on the basis of a complex cation [(BH(4))Li(4)](3+) and a complex anion [Al(BH(4))(4)](-). The refinements from synchrotron powder diffraction of different samples revealed the presence of limited amounts of chloride ions replacing the borohydride on one site. In situ Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal desorption measurements were used to study the decomposition pathway of the compound. Al-Li-borohydride decomposes at approximately 70 degrees C, forming LiBH(4). The high mass loss of about 20 % during the decomposition indicates the release of not only hydrogen but also diborane.

20.
Inorg Chem ; 49(11): 5285-92, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20465276

RESUMO

The pressure evolution of RbBH(4) has been characterized by synchrotron powder X-ray diffraction and Raman spectroscopy up to 23 GPa. Diffraction experiments at ambient temperature reveal three phase transitions, at 3.0, 10.4, and 18 GPa (at 2.6, 7.8, and approximately 20 GPa from Raman data), at which the space group symmetry changes in the order Fm-3m(Z=4) --> P4/nmm(2) --> C222(2) --> I-42m(4). Crystal structures and equations of state are reported for all four phases. The three high-pressure structure types are new in the crystal chemistry of borohydrides. RbBH(4) polymorphs reveal high coordination numbers (CNs) for cation and anion sites, increasing with pressure from 6 to 8, via an intermediate 4 + 4 coordination. Different arrangements of the tetrahedral BH(4) group in the Rb environment define the crystal symmetries of the RbBH(4) polymorphs. The structural evolution in the MBH(4) series is determined by the cation's size, as it differs drastically for M = Li (CNs = 4, 6), Na (CN = 6), and Rb. The only structure common to the whole MBH(4) family is the cubic one. Its bulk modulus linearly decreases as the ionic radius of M increases, indicating that the compressibility of the material is mainly determined by the repulsive BH(4)...BH(4) interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA