Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Small ; 18(19): e2200919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35417095

RESUMO

Dendrite growth and in-homogeneous solid electrolyte interphase (SEI) buildup of Li metal anodes hinder the longtime discharge-charge cycling and safety in secondary metal batteries. Here, the authors report an in-situ restructured artificial lithium/electrolyte SEI exposing an ultrasmooth and thin layer mediated through graphene quantum dots (GQDs). The reformed artificial interphase comprises a mixture of organic/inorganic-rich compositions alike as mosaic interphase, albeit the synergistic effect mediated via hydroxylated GQDs involving redeposition-borne lithium, and its accumulated salts, facilitate a homogeneous and ultrasmooth near fluorine-rich interfacial environment ensuring a facile lithium-ion (Li-ion) diffusion and dendritic-free nature. As a result, symmetrical graphene dots-lithium cells enable a dendrite-less operation up to 2000 h with good cycling stability and capacity retention at current densities 1 and 5 mA cm-2 compared to bare lithium. The well-established fluorinated interface engenders a high reversible capacity and stable performance during the initial and long-term cycles upon configuring in lithium-sulfur (Li-S) cells. Thus, the authors' work illuminates the direction toward achieving dendritic-free smooth and robust metal anodes through manipulating and restructuring the critical SEI chemical components.

2.
Nano Lett ; 21(18): 7879-7886, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34328342

RESUMO

Artificial synaptic platforms are promising for next-generation semiconductor computing devices; however, state-of-the-art optoelectronic approaches remain challenging, owing to their unstable charge trap states and limited integration. We demonstrate wide-band-gap (WBG) III-V materials for photoelectronic neural networks. Our experimental analysis shows that the enhanced crystallinity of WBG synapses promotes better synaptic characteristics, such as effective multilevel states, a wider dynamic range, and linearity, allowing the better power consumption, training, and recognition accuracy of artificial neural networks. Furthermore, light-frequency-dependent memory characteristics suggest that artificial optoelectronic synapses with improved crystallinity support the transition from short-term potentiation to long-term potentiation, implying a clear emulation of the psychological multistorage model. This is attributed to the charge trapping in deep-level states and suppresses fast decay and nonradiative recombination in shallow traps. We believe that the fingerprints of these WBG synaptic characteristics provide an effective strategy for establishing an artificial optoelectronic synaptic architecture for innovative neuromorphic computing.


Assuntos
Redes Neurais de Computação , Sinapses , Fótons
3.
Nano Lett ; 16(9): 5928-33, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27552187

RESUMO

The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications.

4.
Nano Lett ; 16(3): 1890-5, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26839956

RESUMO

Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

5.
Nanotechnology ; 27(41): 415603, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27608886

RESUMO

Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.


Assuntos
Clara de Ovo , Animais , Galinhas , Ouro , Hidrogéis , Nanopartículas Metálicas , Análise Espectral Raman
6.
Nanotechnology ; 27(43): 435501, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27658490

RESUMO

Scalable sub-micrometer molybdenum disulfide ([Formula: see text]) flake films with highly uniform coverage were created using a systematic approach. An electrohydrodynamic (EHD) printing process realized a remarkably uniform distribution of exfoliated [Formula: see text] flakes on desired substrates. In combination with a fast evaporating dispersion medium and an optimal choice of operating parameters, the EHD printing can produce a film rapidly on a substrate without excessive agglomeration or cluster formation, which can be problems in previously reported liquid-based continuous film methods. The printing of exfoliated [Formula: see text] flakes enabled the fabrication of a gas sensor with high performance and reproducibility for [Formula: see text] and [Formula: see text].

7.
Nanotechnology ; 26(21): 215603, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25944839

RESUMO

Al-based composites incorporating multilayered graphene sheets were developed via a facile approach. The multilayered graphene sheets were fabricated from the expanded graphite via a simple mechanical exfoliation process. The facile extrusion molding process with Al powder and graphene sheets exfoliated from expended graphite afforded Al-based graphene composite rods. These composites showed enhanced thermal conductivity compared to the pristine Al rods. Moreover, the Al-based multilayered graphene sheet composites exhibited lower interfacial contact resistance between graphene-based electrodes than the pristine Al. With increasing degrees of dispersion, the number of exposed graphene sheets increases, thereby significantly decreasing the interfacial contact resistance between the composite and external graphite electrode.

8.
Sensors (Basel) ; 15(10): 24903-13, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404279

RESUMO

We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms.

9.
Nano Lett ; 12(6): 3025-30, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22545916

RESUMO

The development of methods to economically synthesize single wire structured multiferroic systems with room temperature spin-charge coupling is expected to be important for building next-generation multifunctional devices with ultralow power consumption. We demonstrate the fabrication of a single nanowire multiferroic system, a new geometry, exhibiting room temperature magnetodielectric coupling. A coaxial nanotube/nanowire heterostructure of barium titanate (BaTiO(3), BTO) and cobalt (Co) has been synthesized using a template-assisted method. Room temperature ferromagnetism and ferroelectricity were exhibited by this coaxial system, indicating the coexistence of more than one ferroic interaction in this composite system.


Assuntos
Compostos de Bário/química , Cristalização/métodos , Nanotubos de Carbono/química , Titânio/química , Compostos de Bário/efeitos da radiação , Impedância Elétrica , Campos Magnéticos , Teste de Materiais , Nanotubos de Carbono/efeitos da radiação , Titânio/efeitos da radiação
10.
Nano Lett ; 12(4): 1789-93, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22260510

RESUMO

Highly conductive reduced graphene oxide (GO) polymer nanocomposites are synthesized by a well-organized in situ thermochemical synthesis technique. The surface functionalization of GO was carried out with aryl diazonium salt including 4-iodoaniline to form phenyl functionalized GO (I-Ph-GO). The thermochemically developed reduced GO (R-I-Ph-GO) has five times higher electrical conductivity (42,000 S/m) than typical reduced GO (R-GO). We also demonstrate a R-I-Ph-GO/polyimide (PI) composites having more than 10(4) times higher conductivity (~1 S/m) compared to a R-GO/PI composites. The electrical resistances of PI composites with R-I-Ph-GO were dramatically dropped under ~3% tensile strain. The R-I-Ph-GO/PI composites with electrically sensitive response caused by mechanical strain are expected to have broad implications for nanoelectromechanical systems.


Assuntos
Grafite/química , Nanocompostos/química , Óxidos/química , Óxidos/síntese química , Temperatura , Condutividade Elétrica , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Propriedades de Superfície
11.
Nano Lett ; 12(11): 5616-21, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23030825

RESUMO

Here, we design and develop high-power electric double-layer capacitors (EDLCs) using carbon-based three dimensional (3-D) hybrid nanostructured electrodes. 3-D hybrid nanostructured electrodes consisting of vertically aligned carbon nanotubes (CNTs) on highly porous carbon nanocups (CNCs) were synthesized by a combination of anodization and chemical vapor deposition techniques. A 3-D electrode-based supercapacitor showed enhanced areal capacitance by accommodating more charges in a given footprint area than that of a conventional CNC-based device.

12.
ACS Appl Mater Interfaces ; 15(14): 18463-18472, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36881815

RESUMO

While neuromorphic computing can define a new era for next-generation computing architecture, the introduction of an efficient synaptic transistor for neuromorphic edge computing still remains a challenge. Here, we envision an atomically thin 2D Te synaptic device capable of achieving a desirable neuromorphic edge computing design. The hydrothermally grown 2D Te nanosheet synaptic transistor apparently mimicked the biological synaptic nature, exhibiting 100 effective multilevel states, a low power consumption of ∼110 fJ, excellent linearity, and short-/long-term plasticity. Furthermore, the 2D Te synaptic device achieved reconfigurable MNIST recognition accuracy characteristics of 88.2%, even after harmful detergent environment infection. We believe that this work serves as a guide for developing futuristic neuromorphic edge computing.

13.
ACS Appl Mater Interfaces ; 15(33): 39539-39549, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37614002

RESUMO

While two-dimensional (2D) materials possess the desirable future of neuromorphic computing platforms, unstable charging and de-trapping processes, which are inherited from uncontrollable states, such as the interface trap between nanocrystals and dielectric layers, can deteriorate the synaptic plasticity in field-effect transistors. Here, we report a facile and effective strategy to promote artificial synaptic devices by providing physical doping in 2D transition-metal dichalcogenide nanomaterials. Our experiments demonstrate that the introduction of niobium (Nb) into 2D WSe2 nanomaterials produces charge trap levels in the band gap and retards the decay of the trapped charges, thereby accelerating the artificial synaptic plasticity by encouraging improved short-/long-term plasticity, increased multilevel states, lower power consumption, and better symmetry and asymmetry ratios. Density functional theory calculations also proved that the addition of Nb to 2D WSe2 generates defect tolerance levels, thereby governing the charging and de-trapping mechanisms of the synaptic devices. Physically doped electronic synapses are expected to be a promising strategy for the development of bioinspired artificial electronic devices.

14.
Nanotechnology ; 23(32): 325601, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22825368

RESUMO

In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI(3)), it was possible to form covalent bonds between the Ga(3+) ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy.

15.
ACS Nano ; 16(3): 3637-3646, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35166540

RESUMO

Atomic-layered materials, such as high-quality bismuth oxychalcogenides, which are composed of oppositely charged alternate layers grown using chemical vapor deposition, have attracted considerable attention. Their physical properties are well-suited for high-speed, low-power-consumption optoelectronic devices, and the rapid determination of their crystallographic characteristics is crucial for scalability and integration. In this study, we introduce how the crystallographic structure and quality of such materials can be projected through Raman spectroscopy analysis. Frequency modes at ∼55, ∼78, ∼360, and ∼434 cm-1 were detected, bearing out theoretical calculations from the literature. The low-frequency modes positioned at 55 and 78 cm-1 were activated by structural defects, such as grain boundaries and O-rich edges in the Bi2O2Se crystals, accompanied by sensitivity to the excitation energy. Furthermore, the line defects at ∼55 cm-1 exhibited a strong 2-fold polarization dependence, similar to graphene/graphite edges. Our results can help illuminate the mechanism for activating the Raman-active mode from the infrared active mode by defects, as well as the electronic structures of these two-dimensional layered materials. We also suggest that the nanoscale width line defects in Bi2O2Se can be visualized using Raman spectroscopy.

16.
iScience ; 25(1): 103660, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024590

RESUMO

Novel gas sensors that work at room temperature are attracting attention due to their low energy consumption and stability in the presence of toxic gases. However, the development of sensing characteristics at room temperature is still a primary challenge. Diverse reaction pathways and low adsorption energy for gas molecules are required to fabricate a gas sensor that works at room temperature with high sensitivity, selectivity, and efficiency. Therefore, we enhanced the gas sensing performance at room temperature by constructing hybridized nanostructure of 1D-2D hybrid of SnSe2 layers and SnO2 nanowire networks and by controlling the back-gate bias (Vg = 1.5 V). The response time was dramatically reduced by lowering the energy barrier for the adsorption on the reactive sites, which are controlled by the back gate. Consequently, we believe that this research could contribute to improving the performance of gas sensors that work at room temperature.

17.
Nat Commun ; 13(1): 3467, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725850

RESUMO

The need for miniaturized and high-performance devices has attracted enormous attention to the development of quantum silicon nanowires. However, the preparation of abundant quantities of silicon nanowires with the effective quantum-confined dimension remains challenging. Here, we prepare highly dense and vertically aligned sub-5 nm silicon nanowires with length/diameter aspect ratios greater than 10,000 by developing a catalyst-free chemical vapor etching process. We observe an unusual lattice reduction of up to 20% within ultra-narrow silicon nanowires and good oxidation stability in air compared to conventional silicon. Moreover, the material exhibits a direct optical bandgap of 4.16 eV and quasi-particle bandgap of 4.75 eV with the large exciton binding energy of 0.59 eV, indicating the significant phonon and electronic confinement. The results may provide an opportunity to investigate the chemistry and physics of highly confined silicon quantum nanostructures and may explore their potential uses in nanoelectronics, optoelectronics, and energy systems.

18.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957578

RESUMO

The synthesis of controllable hollow graphitic architectures can engender revolutionary changes in nanotechnology. Here, we present the synthesis, processing, and possible applications of low aspect ratio hollow graphitic nanoscale architectures that can be precisely engineered into morphologies of (1) continuous carbon nanocups, (2) branched carbon nanocups, and (3) carbon nanotubes-carbon nanocups hybrid films. These complex graphitic nanocup-architectures could be fabricated by using a highly designed short anodized alumina oxide nanochannels, followed by a thermal chemical vapor deposition of carbon. The highly porous film of nanocups is mechanically flexible, highly conductive, and optically transparent, making the film attractive for various applications such as multifunctional and high-performance electrodes for energy storage devices, nanoscale containers for nanogram quantities of materials, and nanometrology.

19.
Sci Rep ; 10(1): 2076, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034209

RESUMO

While non-polar nanostructured-GaN crystals are considered as a prospective material for the realization of futuristic opto-electronic application, the formation of non-polar GaN nanocrystals (NCs) with highly efficient visible emission characteristics remain unquestionable up to now. Here, we report the oxygen-incorporated a-plane GaN NCs with highly visible illumination excitonic recombination characteristics. Epitaxially aligned a-plane NCs with average diameter of 100 nm were formed on r-plane sapphire substrates by hydride vapor phase epitaxy (HVPE), accompanied by the oxygen supply during the growth. X-ray photoemission spectroscopy measurements proved that the NCs exhibited Ga-O bonding in the materials, suggesting the formation of oxidized states in the bandgap. It was found that the NCs emitted the visible luminescence wavelength of 400‒500 nm and 680‒720 nm, which is attributed to the transition from oxygen-induced localized states. Furthermore, time-resolved photoluminescence studies revealed the significant suppression of the quantum confined Stark effect and highly efficient excitonic recombination within GaN NCs. Therefore, we believe that the HVPE non-polar GaN NCs can guide the simple and efficient way toward the nitride-based next-generation nano-photonic devices.

20.
Nanomaterials (Basel) ; 10(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050595

RESUMO

In this study, the charge transport mechanism of Pd/Si-based FS-GaN Schottky diodes was investigated. A temperature-dependent current-voltage analysis revealed that the I-V characteristics of the diodes show a good rectifying behavior with a large ratio of 103-105 at the forward to reverse current at ±1 V. The interface states and non-interacting point defect complex between the Pd metal and FS-GaN crystals induced the inhomogeneity of the barrier height and large ideality factors. Furthermore, we revealed that the electronic conduction of the devices prefers the thermionic field emission (TFE) transport, not the thermionic emission (TE) model, over the entire measurement conditions. The investigation on deep level transient spectroscopy (DLTS) suggests that non-interacting point-defect-driven tunneling influences the charge transport. This investigation about charge transport paves the way to achieving next-generation optoelectronic applications using Si-based FS-GaN Schottky diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA