Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 56(3): 422-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656163

RESUMO

OBJECTIVE: Mutations of ATP1A3 have been associated with rapid onset dystonia-parkinsonism and more recently with alternating hemiplegia of childhood. Here we report one child with catastrophic early life epilepsy and shortened survival, and another with epilepsy, episodic prolonged apnea, postnatal microcephaly, and severe developmental disability. Novel heterozygous mutations (p.Gly358Val and p.Ile363Asn) were identified in ATP1A3 in these children. METHODS: Subjects underwent next-generation sequencing under a research protocol. Clinical data were collected retrospectively. The biochemical effects of the mutations on ATP1A3 protein function were investigated. Postmortem neuropathologic specimens from control and affected subjects were studied. RESULTS: The mutations localized to the P domain of the Na,K-ATPase α3 protein, and resulted in significant reduction of Na,K-ATPase activity in vitro. We demonstrate in both control human brain tissue and that from the subject with the p.Gly358Val mutation that ATP1A3 immunofluorescence is prominently associated with interneurons in the cortex, which may provide some insight into the pathogenesis of the disease. SIGNIFICANCE: The findings indicate these mutations cause severe phenotypes of ATP1A3-related disorder spectrum that include catastrophic early life epilepsy, episodic apnea, and postnatal microcephaly.


Assuntos
Doença Catastrófica , Epilepsia/genética , Epilepsia/psicologia , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Análise Mutacional de DNA , Eletroencefalografia , Inibidores Enzimáticos/farmacologia , Epilepsia/complicações , Epilepsia/patologia , Feminino , Glutamato Descarboxilase/metabolismo , Células HEK293 , Humanos , Lactente , Masculino , Modelos Moleculares , Doenças do Sistema Nervoso/etiologia , Ouabaína/farmacologia , Transfecção
2.
Mol Genet Metab ; 103(4): 349-57, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21605995

RESUMO

Carnitine-acylcarnitine translocase (CACT) deficiency is a rare autosomal recessive disease of fatty acid oxidation, mainly affecting long chain fatty acid utilization. The disease usually presents at neonatal period with severe hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy and/or arrhythmia, hepatic dysfunction, skeletal muscle weakness, and encephalopathy. Definitive diagnosis of CACT deficiency by molecular analysis of the SLC25A20 gene has recently become clinically available. In contrast to biochemical analysis, sequence analysis is a more rapid and reliable method for diagnosis of CACT deficiency. In this study, we used Sanger sequencing and target array CGH to identify molecular defects in the SLC25A20 gene of patients with clinical features and an acylcarnitine profile consistent with CACT deficiency. Eight novel mutations, including a large 25.9 kb deletion encompassing exons 5 to 9 of SLC25A20 were found. Review of the published cases revealed that CACT deficiency is a pan-ethnic disorder with a broad mutation spectrum. Mutations are distributed along the entire gene without a hot spot. Two thirds of them are nonsense, frame-shift, or splice site mutations resulting in premature stop codons. This study underscores the importance of comprehensive molecular analysis, including sequencing and targeted array CGH of the SLC25A20 gene when CACT deficiency is suspected.


Assuntos
Carnitina Aciltransferases/deficiência , Carnitina Aciltransferases/genética , Adulto , Sequência de Bases , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferases/metabolismo , Pré-Escolar , Hibridização Genômica Comparativa , Éxons , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação
4.
JPEN J Parenter Enteral Nutr ; 45(2): 230-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33085788

RESUMO

BACKGROUND: Patients with severe long-chain fatty acid oxidation disorders (LC-FAODs) experience serious morbidity and mortality despite traditional dietary management including medium-chain triglyceride (MCT)-supplemented, low-fat diets. Triheptanoin is a triglyceride oil that is broken down to acetyl-coenzyme A (CoA) and propionyl-CoA, which replenishes deficient tricarboxylic acid cycle intermediates. We report the complex medical and nutrition management of triheptanoin therapy initiated emergently for 3 patients with LC-FAOD. METHODS: Triheptanoin (Ultragenyx Pharmaceutical, Inc, Novato, CA, USA) was administered to 3 patients with LC-FAOD on a compassionate-use basis. Triheptanoin was mixed with non-MCT-containing low-fat formula. Patients were closely followed with regular cardiac and laboratory monitoring. RESULTS: Cardiac ejection fraction normalized after triheptanoin initiation. Patients experienced fewer hospitalizations related to metabolic crises while on triheptanoin. Patient 1 has tolerated oral administration without difficulty since birth. Patients 2 and 3 experienced increased diarrhea. Recurrent breakdown of the silicone gastrostomy tube occurred in patient 3, whereas the polyurethane nasogastric tube for patient 2 remained intact. Patient 3 experiences recurrent episodes of elevated creatine kinase levels and muscle weakness associated with illness. Patient 3 had chronically elevated C10-acylcarnitines while on MCT supplementation, which normalized after initiation of triheptanoin and discontinuation of MCT oil. CONCLUSIONS: Triheptanoin can ameliorate acute cardiomyopathy and increase survival in patients with severe LC-FAOD. Substituting triheptanoin for traditional MCT-based treatment improves clinical outcomes. MCT oil might be less effective in carnitine-acylcarnitine translocase deficiency patients compared with other FAODs and needs further investigation.


Assuntos
Erros Inatos do Metabolismo Lipídico , Carnitina , Ácidos Graxos , Humanos , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Oxirredução , Triglicerídeos
5.
Epilepsia ; 50(5): 1167-75, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19128417

RESUMO

PURPOSE: Pyridoxine-dependent seizure (PDS) is a rare disorder characterized by seizures that are resistant to common anticonvulsants, and that are ultimately controlled by daily pharmacologic doses of pyridoxine (vitamin B6). Mutations of the antiquitin gene (ALDH7A1) are now recognized as the molecular basis of cases of neonatal-onset PDS. METHODS: Bidirectional DNA sequence analysis of ALDH7A1 was undertaken along with plasma pipecolic acid (PA) measurements to determine the prevalence of ALDH7A1 mutations in a cohort of 18 North American patients with PDS. RESULTS: In patients with neonatal-onset PDS, compound heterozygous or homozygous ALDH7A1 mutations were detected in 10 of 12 cases, and a single mutation was found in the remaining 2. In later-onset cases, mutations in ALDH7A1 were detected in three of six cases. In two patients with infantile spasms responsive to pyridoxine treatment and with good clinical outcomes, no mutations were found and PA levels were normal. In total, 13 novel mutations were identified. DISCUSSION: Our study advances previous findings that defects of ALDH7A1 are almost always the cause of neonatal-onset PDS and that defects in this gene are also responsible for some but not all later-onset cases. Later-onset cases of infantile spasms with good outcomes lacked evidence for antiquitin dysfunction, suggesting that this phenotype is less compelling for PDS.


Assuntos
Aldeído Desidrogenase/genética , Mutação/genética , Convulsões/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , História Antiga , Humanos , Masculino , América do Norte/epidemiologia , Ácidos Pipecólicos/sangue , Ácidos Pipecólicos/urina , Prevalência , Piridoxina/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/epidemiologia , Convulsões/metabolismo , Análise de Sequência de Proteína , Complexo Vitamínico B/uso terapêutico
6.
Mech Ageing Dev ; 132(6-7): 331-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21745495

RESUMO

INTRODUCTION: Ubiquinone (UQ) is a redox active lipid that transfers electrons from complex I or II to complex III in the electron transport chain (ETC). The long-lived Caenorhabditis elegans mutant clk-1 is unable to synthesize its native ubiquinone, and accumulates high amounts of its precursor, 5-demethoxyubiquinone-9 (DMQ(9)). In clk-1, complexes I-III activity is inhibited while complexes II-III activity is normal. We asked whether the complexes I-III defect in clk-1 was caused by: (1) a defect in the ETC; (2) an inhibitory effect of DMQ(9); or (3) a decreased amount of ubiquinone. METHODS: We extracted the endogenous quinones from wildtype (N2) and clk-1 mitochondria, replenished them with exogenous ubiquinones, and measured ETC activities. RESULTS: Replenishment of extracted mutant and wildtype mitochondria resulted in equal enzymatic activities for complexes I-III and II-III ETC assays. Blue native gels showed that supercomplex formation was indistinguishable between clk-1 and N2. The addition of a pentane extract from clk-1 mitochondria containing DMQ(9) to wildtype mitochondria specifically inhibited complexes I-III activity. UQ in clk-1 mitochondria was oxidized compared to N2. DISCUSSION: Our results show that no measurable intrinsic ETC defect exists in clk-1 mitochondria. The data indicate that DMQ(9) specifically inhibits electron transfer from complex I to ubiquinone.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Mitocôndrias/metabolismo , Mutação , Ubiquinona/análogos & derivados , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/genética , Ubiquinona/genética , Ubiquinona/metabolismo
7.
Am J Hum Genet ; 75(6): 1136-42, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15486829

RESUMO

Isovaleric acidemia (IVA) is an inborn error of leucine metabolism that can cause significant morbidity and mortality. Since the implementation, in many states and countries, of newborn screening (NBS) by tandem mass spectrometry, IVA can now be diagnosed presymptomatically. Molecular genetic analysis of the IVD gene for 19 subjects whose condition was detected through NBS led to the identification of one recurring mutation, 932C-->T (A282V), in 47% of mutant alleles. Surprisingly, family studies identified six healthy older siblings with identical genotype and biochemical evidence of IVA. Our findings indicate the frequent occurrence of a novel mild and potentially asymptomatic phenotype of IVA. This has significant consequences for patient management and counseling.


Assuntos
Leucina/metabolismo , Erros Inatos do Metabolismo/genética , Mutação/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Algoritmos , Primers do DNA , Genótipo , Hemiterpenos , Humanos , Recém-Nascido , Isovaleril-CoA Desidrogenase , Espectrometria de Massas , Erros Inatos do Metabolismo/diagnóstico , Triagem Neonatal , Ácidos Pentanoicos , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA