Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(1): 41-46, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29259120

RESUMO

All extant life employs the same 20 amino acids for protein biosynthesis. Studies on the number of amino acids necessary to produce a foldable and catalytically active polypeptide have shown that a basis set of 7-13 amino acids is sufficient to build major structural elements of modern proteins. Hence, the reasons for the evolutionary selection of the current 20 amino acids out of a much larger available pool have remained elusive. Here, we have analyzed the quantum chemistry of all proteinogenic and various prebiotic amino acids. We find that the energetic HOMO-LUMO gap, a correlate of chemical reactivity, becomes incrementally closer in modern amino acids, reaching the level of specialized redox cofactors in the late amino acids tryptophan and selenocysteine. We show that the arising prediction of a higher reactivity of the more recently added amino acids is correct as regards various free radicals, particularly oxygen-derived peroxyl radicals. Moreover, we demonstrate an immediate survival benefit conferred by the enhanced redox reactivity of the modern amino acids tyrosine and tryptophan in oxidatively stressed cells. Our data indicate that in demanding building blocks with more versatile redox chemistry, biospheric molecular oxygen triggered the selective fixation of the last amino acids in the genetic code. Thus, functional rather than structural amino acid properties were decisive during the finalization of the universal genetic code.


Assuntos
Aminoácidos/química , Modelos Químicos , Origem da Vida , Oxigênio/química
2.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771157

RESUMO

Prooxidative therapy is a well-established concept in infectiology and parasitology, in which prooxidative drugs like artemisinin and metronidazole play a pivotal clinical role. Theoretical considerations and earlier studies have indicated that prooxidative therapy might also represent a promising strategy in oncology. Here, we have investigated a novel class of prooxidative drugs, namely chain-transfer agents, as cytostatic agents in a series of human tumor cell lines in vitro. We have found that different chain-transfer agents of the lipophilic thiol class (like dodecane-1-thiol) elicited half-maximal effective concentrations in the low micromolar range in SY5Y cells (human neuroblastoma), Hela cells (human cervical carcinoma), HEK293 cells (immortalized human kidney), MCF7 cells (human breast carcinoma), and C2C12 cells (mouse myoblast). In contrast, HepG2 cells (human hepatocellular carcinoma) were resistant to toxicity, presumably through their high detoxification capacity for thiol groups. Cytotoxicity was undiminished by hypoxic culture conditions, but substantially lowered after cellular differentiation. Compared to four disparate, clinically used reference compounds in vitro (doxorubicin, actinomycin D, 5-fluorouracil, and hydroxyurea), chain-transfer agents emerged as comparably potent on a molar basis and on a maximum-effect basis. Our results indicate that chain-transfer agents possess a promising baseline profile as cytostatic drugs and should be explored further for anti-tumor chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Citostáticos/farmacologia , Óxidos de Nitrogênio/farmacologia , Compostos de Sulfidrila/farmacologia , Antineoplásicos/química , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Citostáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/química , Células Tumorais Cultivadas
3.
Biochem Biophys Res Commun ; 525(3): 570-575, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32115149

RESUMO

Retrotransposon activation occurs in a variety of neurological disorders including multiple sclerosis and Alzheimer's Disease. While the origins of disease-related retrotransposon activation have remained mostly unidentified, this phenomenon may well contribute to disease progression by inducing inflammation, disrupting transcription and, potentially, genomic insertion. Here, we report that the inhibition of mitochondrial respiratory chain complex I by pharmacological agents widely used to model Parkinson's disease leads to a significant increase in expression of the ORF1 protein of the long interspersed nucleotide element 1 (LINE1) retrotransposon in human dopaminergic LUHMES cells. These findings were recapitulated in midbrain lysates from accordingly treated wild-type mice that mimic Parkinson's disease. Retrotransposon activation was paralleled by a loss of DNA cytosine methylation, providing a potential mechanism of retrotransposon mobilization. Loss of DNA methylation as well as retrotransposon activation were suppressed by the mitochondrial antioxidant phenothiazine, indicating that the well-established production of oxidants by inhibited complex I was causing these effects. Retrotransposon activation in some brain disorders may be less of a primary disease trigger rather than a consequence of mitochondrial distress, which is very common in neurodegenerative diseases.


Assuntos
Mitocôndrias/genética , Neurônios/metabolismo , Retroelementos/genética , Animais , Linhagem Celular , Metilação de DNA/genética , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Mesencéfalo/citologia , Camundongos Endogâmicos C57BL
4.
Biol Chem ; 401(2): 213-231, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31318686

RESUMO

Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.


Assuntos
Cisteína/genética , Cisteína/metabolismo , Código Genético , Glutationa/genética , Glutationa/metabolismo , Oxigênio/metabolismo , Água/metabolismo , Adaptação Fisiológica
5.
Molecules ; 22(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106854

RESUMO

Human neurodegenerative diseases are accompanied by accumulation of heavily oxidized and aggregated proteins. However, the exact molecular reason is not fully elucidated yet. Insufficient cellular protein quality control is thought to play an important role in accumulating covalently oxidized misfolded proteins. Pharmacologically active polyphenols and their derivatives exhibit potential for preventive and therapeutic purposes against protein aggregation during neurodegeneration. Although these compounds act on various biochemical pathways, their role in stabilizing the protein degradation machinery at different stages may be an attractive therapeutical strategy to halt the accumulation of misfolded proteins. This review evaluates and discusses the existing scientific literature on the effect of polyphenols on three major protein degradation pathways: chaperone-mediated autophagy, the proteasome and macroautophagy. The results of these studies demonstrate that phenolic compounds are able to influence the major protein degradation pathways at different levels.


Assuntos
Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Proteólise/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Polifenóis/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
J Neurochem ; 133(3): 352-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25393523

RESUMO

Oxidative stress is an early hallmark in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, the critical biochemical effector mechanisms of oxidative neurotoxicity have remained surprisingly elusive. In screening various peroxides and potential substrates of oxidation for their effect on neuronal survival, we observed that intramembrane compounds were significantly more active than aqueous or amphiphilic compounds. To better understand this result, we synthesized a series of competitive and site-specific membrane protein oxidation inhibitors termed aminoacyllipids, whose structures were designed on the basis of amino acids frequently found at the protein-lipid interface of synaptic membrane proteins. Investigating the aminoacyllipids in primary neuronal culture, we found that the targeted protection of transmembrane tyrosine and tryptophan residues was sufficient to prevent neurotoxicity evoked by hydroperoxides, kainic acid, glutathione-depleting drugs, and certain amyloidogenic peptides, but ineffective against non-oxidative inducers of apoptosis such as sphingosine or Akt kinase inhibitors. Thus, the oxidative component of different neurotoxins appears to converge on neuronal membrane proteins, irrespective of the primary mechanism of cellular oxidant generation. Our results indicate the existence of a one-electron redox cycle based on membrane protein aromatic surface amino acids, whose disturbance or overload leads to excessive membrane protein oxidation and neuronal death. Membrane proteins have rarely been investigated as potential victims of oxidative stress in the context of neurodegeneration. This study provides evidence that excessive one-electron oxidation of membrane proteins from within the lipid bilayer, depicted in the graphic, is a functionally decisive step toward neuronal cell death in response to different toxins.


Assuntos
Proteínas de Membrana/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Proteínas de Membrana/química , Oxirredução , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley
7.
Geroscience ; 46(4): 3635-3658, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38267672

RESUMO

Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.


Assuntos
Complexo I de Transporte de Elétrons , Ácidos Graxos , Glucose , NADP , Oxirredução , Animais , Ácidos Graxos/metabolismo , Glucose/metabolismo , NADP/metabolismo , Ratos , Complexo I de Transporte de Elétrons/metabolismo , Hipoglicemiantes/farmacologia , NAD/metabolismo , Mitocôndrias/metabolismo , Metformina/farmacologia , Masculino
8.
EMBO J ; 28(7): 889-901, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19229298

RESUMO

The Hsc/Hsp70 co-chaperones of the BAG (Bcl-2-associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin-binding protein p62/SQSTM1. The BAG3/BAG1 ratio is also elevated in neurons during aging of the rodent brain, where, consistent with a higher macroautophagy activity, we find increased levels of the autophagosomal marker LC3-II as well as a higher cathepsin activity. We conclude that the BAG3-mediated recruitment of the macroautophagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Senescência Celular/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a DNA/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo
9.
Free Radic Res ; 57(2): 105-114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37074683

RESUMO

Lipid peroxidation is a biochemically adverse phenomenon with key involvement in many different diseases including premature infant blindness, nonalcoholic steatohepatitis, or Parkinson's disease. Moreover, lipid peroxidation may be the most important universal driver of the biological aging process. Canonic lipid peroxidation is a free radical chain reaction consisting of three kinetically independent steps, initiation, propagation, and termination. During the bulk propagation phase, only lipids and oxygen are consumed as substrates and maintain the chain reaction. In native biological membranes, however, lipid peroxidation takes place in direct vicinity to high concentrations of inserted membrane proteins with their exposed hydrophobic amino acid side chains. In the following, we review the evidence that redox-active intramembrane amino acid residues have a profound impact on the course and extent of lipid peroxidation in vivo. Specifically, tyrosine and tryptophan are concluded to be chain-breaking antioxidants that effectuate termination, whereas cysteine is a chain-transfer catalyst that accelerates propagation and thereby promotes lipid peroxidation. Methionine, in turn, is highly accumulated in mitochondrial membrane proteins of animal species with high metabolic rates and imminent danger of lipid peroxidation, though its specific role has not been entirely defined. Potentially, it interferes with initiation on the membrane protein surface. Nevertheless, all four residues are distinguished by their clear relevance to lipid peroxidation as deduced from either experimental or genetic and comparative data. The latter have uncovered distinct evolutionary pressures in favor or against each residue in lipid membranes and have shed light on formerly unacknowledged chemical mechanisms.


Assuntos
Antioxidantes , Proteínas de Membrana , Animais , Antioxidantes/química , Espécies Reativas de Oxigênio , Peroxidação de Lipídeos , Oxirredução , Radicais Livres/química , Aminoácidos
10.
Antioxidants (Basel) ; 11(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35624747

RESUMO

Thiyl radicals are exceptionally interesting reactive sulfur species (RSS), but rather rarely considered in a biological or medical context. We here review the reactivity of protein thiyl radicals in aqueous and lipid phases and provide an overview of their most relevant reaction partners in biological systems. We deduce that polyunsaturated fatty acids (PUFAs) are their preferred reaction substrates in lipid phases, whereas protein side chains arguably prevail in aqueous phases. In both cellular compartments, a single, dominating thiyl radical-specific antioxidant does not seem to exist. This conclusion is rationalized by the high reaction rate constants of thiyl radicals with several highly concentrated substrates in the cell, precluding effective interception by antioxidants, especially in lipid bilayers. The intractable reactivity of thiyl radicals may account for a series of long-standing, but still startling biochemical observations surrounding the amino acid cysteine: (i) its global underrepresentation on protein surfaces, (ii) its selective avoidance in aerobic lipid bilayers, especially the inner mitochondrial membrane, (iii) the inverse correlation between cysteine usage and longevity in animals, (iv) the mitochondrial synthesis and translational incorporation of cysteine persulfide, and potentially (v) the ex post introduction of selenocysteine into the genetic code.

11.
Proc Natl Acad Sci U S A ; 105(43): 16496-501, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18946048

RESUMO

Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized amino acid methionine in the highly oxidative inner mitochondrial membrane. This apparently paradoxical outcome can yet be smoothly settled if the antioxidant surface chemistry of methionine is taken into account, and we present direct experimental evidence that intramembrane accumulation of methionine exhibits antioxidant and cytoprotective properties in living cells. Our results unveil that methionine is an evolutionarily selected antioxidant building block of respiratory chain complexes. Collective protein alterations can thus constitute the selective advantage behind codon reassignments, which authenticates the "ambiguous decoding" hypothesis of genetic code evolution. Oxidative stress has shaped the mitochondrial genetic code.


Assuntos
DNA Mitocondrial/genética , Transporte de Elétrons , Código Genético , Metionina/metabolismo , Animais , Antioxidantes , Evolução Biológica , Bases de Dados de Ácidos Nucleicos , Fungos , Genoma , Isoleucina/genética , Metionina/genética , Membranas Mitocondriais/química , Estresse Oxidativo/genética , Plantas
12.
Cell Death Discov ; 7(1): 286, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642296

RESUMO

The sirtuin (SIRT) protein family has been of major research interest over the last decades because of their involvement in aging, cancer, and cell death. SIRTs have been implicated in gene and metabolic regulation through their capacity to remove acyl groups from lysine residues in proteins in an NAD+-dependent manner, which may alter individual protein properties as well as the histone-DNA interaction. Since SIRTs regulate a wide range of different signaling cascades, a fine-tuned homeostasis of these proteins is imperative to guarantee the function and survival of the cell. So far, however, how exactly this homeostasis is established has remained unknown. Here, we provide evidence that neuronal SIRT degradation in Parkinson's disease (PD) models is executed by autophagy rather than the proteasome. In neuronal Lund human mesencephalic (LUHMES) cells, all seven SIRTs were substrates for autophagy and showed an accelerated autophagy-dependent degradation upon 1-methyl-4-phenylpyridinium (MPP+) mediated oxidative insults in vitro, whereas the proteasome did not contribute to the removal of oxidized SIRTs. Through blockade of endogenous H2O2 generation and supplementation with the selective radical scavenger phenothiazine (PHT), we could identify H2O2-derived species as the responsible SIRT-oxidizing agents. Analysis of all human SIRTs suggested a conserved regulatory motif based on cysteine oxidation, which may have triggered their degradation via autophagy. High amounts of H2O2, however, rapidly carbonylated selectively SIRT2, SIRT6, and SIRT7, which were found to accumulate carbonylation-prone amino acids. Our data may help in finding new strategies to maintain and modify SIRT bioavailability in neurodegenerative disorders.

13.
Neurobiol Dis ; 40(1): 120-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20403440

RESUMO

Oxidative stress is involved in the pathogenesis of various neurodegenerative disorders, conventional antioxidant strategies have yet been of limited success. We have employed transgenic Caenorhabditis elegans expressing DsRed2 in dopaminergic neurons and CFP pan-neuronally, to characterize in larval and adult animals the effects of rotenone and 1-methyl-4-phenyl-pyridinium (MPP(+)) on the dopaminergic system. Investigating the antioxidant phenothiazine and different derived antipsychotic drugs, it was found that free phenothiazine exerted strong neuroprotection at the cellular level and resulted in a better performance in behavioral assays, whereas apomorphine and other dopamine agonists only rescued adult locomotor parameters. Phenothiazine antipsychotics with dopamine antagonist properties were likewise not cytoprotective, but even induced motor deficits by themselves. Beyond phenothiazine, other tricyclic imines elicited significant neuroprotection at considerably lower doses than different natural antioxidants. Mitochondrially targeted antioxidants were more potent than these untargeted natural antioxidants, yet not as potent as the untargeted compound phenothiazine. Thus, dopaminergic toxicity of rotenone and MPP(+)in vivo can be forestalled by nanomolar concentrations of certain chain-breaking antioxidants irrespective of dopamine receptor modulation or mitochondrial targeting.


Assuntos
Caenorhabditis elegans/genética , Dopamina/fisiologia , Degeneração Neural/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Fenotiazinas/farmacologia , Animais , Animais Geneticamente Modificados , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Modelos Animais de Doenças , Humanos , Inseticidas/toxicidade , Modelos Genéticos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Fenotiazinas/uso terapêutico , Rotenona/toxicidade
14.
J Appl Genet ; 61(2): 195-203, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32157656

RESUMO

Leber's hereditary optic neuropathy (LHON) is one of the most common mitochondrial diseases caused by point mutations in mitochondrial DNA (mtDNA). The majority of diagnosed LHON cases are caused by a point mutation at position 11,778 in the mitochondrial genome. LHON mainly affects young men in their 20s and 30s with usually poor visual prognosis. It remains unexplained why men are more likely to develop the disease and why only retinal ganglion cells are affected. In this study, a cell model was used for the first time to investigate the influence of testosterone on the cell death mechanism apoptosis and on an autophagy/mitophagy. Cells with m.11778G > A were found to be significantly more susceptible to nucleosome formation and effector caspase activation that serve as hallmarks of apoptotic cell death. Cells having this mutation expressed higher levels of mitophagic receptors BNIP3 and BNIP3L/Nix in a medium with testosterone. Moreover, cells having the mutation exhibited greater mitochondrial mass, which suggests these cells have a decreased cell survival. The observed decrease in cell survival was supported by the observed increase in apoptotic cell death. Autophagy was analyzed after inhibition with Bafilomycin A1 (Baf A1). The results indicate impairment in autophagy in LHON cells due to lower autophagic flux supported by observed lower levels of autophagosome marker LC3-II. The observed impaired lower autophagic flux in mutant cells correlated with increased levels of BNIP3 and BNIP3L/Nix in mutant cells.


Assuntos
Autofagia/efeitos dos fármacos , Mitofagia/genética , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Testosterona/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Células Sanguíneas/efeitos dos fármacos , DNA Mitocondrial/genética , Feminino , Genoma Mitocondrial/genética , Humanos , Macrolídeos/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Nucleossomos/efeitos dos fármacos , Nucleossomos/genética , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , Mutação Puntual/genética , Células Ganglionares da Retina/efeitos dos fármacos , Testosterona/metabolismo
15.
Redox Biol ; 36: 101628, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863215

RESUMO

Cysteine is arguably the best-studied biological amino acid, whose thiol group frequently participates in catalysis or ligand binding by proteins. Still, cysteine's unusual biological distribution has remained mysterious, being strikingly underrepresented in transmembrane domains and on accessible protein surfaces, particularly in aerobic life forms ("cysteine anomaly"). Noting that lipophilic thiols have been used for decades as radical chain transfer agents in polymer chemistry, we speculated that the rapid formation of thiyl radicals in hydrophobic phases might provide a rationale for the cysteine anomaly. Hence, we have investigated the effects of dodecylthiol and related compounds in isolated biomembranes, cultivated human cells and whole animals (C. elegans). We have found that lipophilic thiols at micromolar concentrations were efficient accelerators, but not inducers of lipid peroxidation, catalyzed fatty acid isomerization to trans-fatty acids, and evoked a massive cellular stress response related to protein and DNA damage. These effects were specific for lipophilic thiols and were absent with thioethers, alcohols or hydrophilic compounds. Catalytic chain transfer activity by thiyl radicals appears to have deeply influenced the structural biology of life as reflected in the cysteine anomaly. Chain transfer agents represent a novel class of biological cytotoxins that selectively accelerate oxidative damage in vivo.


Assuntos
Caenorhabditis elegans , Compostos de Sulfidrila , Animais , Cisteína , Radicais Livres , Humanos , Peroxidação de Lipídeos
16.
Cells ; 9(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081014

RESUMO

Macroautophagy is a conserved degradative process for maintaining cellular homeostasis and plays a key role in aging and various human disorders. The microtubule-associated protein 1A/1B light chain 3B (MAP1LC3B or LC3B) is commonly analyzed as a key marker for autophagosomes and as a proxy for autophagic flux. Three paralogues of the LC3 gene exist in humans: LC3A, LC3B and LC3C. The molecular function, regulation and cellular localization of LC3A and LC3C have not been investigated frequently, even if a similar function to that described for LC3B appears likely. Here, we have selectively decapacitated LC3B by three separate strategies in primary human fibroblasts and analyzed the evoked effects on LC3A, LC3B and LC3C in terms of their cellular distribution and co-localization with p62, a ubiquitin and autophagy receptor. First, treatment with pharmacological sirtuin 1 (SIRT1) inhibitors to prevent the translocation of LC3B from the nucleus into the cytosol induced an increase in cytosolic LC3C, a heightened co-localization of LC3C with p62, and an increase LC3C-dependent autophagic flux as assessed by protein lipidation. Cytosolic LC3A, however, was moderately reduced, but also more co-localized with p62. Second, siRNA-based knock-down of SIRT1 broadly reproduced these findings and increased the co-localization of LC3A and particularly LC3C with p62 in presumed autophagosomes. These effects resembled the effects of pharmacological sirtuin inhibition under normal and starvation conditions. Third, siRNA-based knock-down of total LC3B in cytosol and nucleus also induced a redistribution of LC3C as if to replace LC3B in the nucleus, but only moderately affected LC3A. Total protein expression of LC3A, LC3B, LC3C, GABARAP and GABARAP-L1 following LC3B decapacitation was unaltered. Our data indicate that nuclear trapping and other causes of LC3B functional loss in the cytosol are buffered by LC3A and actively compensated by LC3C, but not by GABARAPs. The biological relevance of the potential functional compensation of LC3B decapacitation by LC3C and LC3A warrants further study.


Assuntos
Autofagossomos/metabolismo , Fibroblastos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lipídeos/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Filogenia , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Sirtuínas/metabolismo , Frações Subcelulares/metabolismo
17.
J Neurochem ; 110(1): 118-32, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19486265

RESUMO

Strong evidence indicates that oxidative stress may be causally involved in the pathogenesis of Parkinson's disease. We have employed human dopaminergic neuroblastoma cells and rat primary mesencephalic neurons to assess the protective potential of three novel bisarylimine antioxidants on dopaminergic cell death induced by complex I inhibition or glutathione depletion. We have found that exceptionally low concentrations (EC(50) values approximately 20 nM) of these compounds (iminostilbene, phenothiazine, and phenoxazine) exhibited strong protective effects against the toxicities of MPP(+), rotenone, and l-buthionine sulfoximine. Investigating intracellular glutathione levels, it was found that MPP(+), L-buthionine sulfoximine, and rotenone disrupted different aspects of the native glutathione equilibrium, while the aromatic imines did not further influence glutathione levels or redox state on any baseline. However, the imines independently reduced protein oxidation and total oxidant flux, saved the mitochondrial membrane potential, and provided full cytoprotection under conditions of complete glutathione depletion. The unusually potent antioxidant effects of the bisarylimines could be reproduced in isolated mitochondria, which were instantly protected from lipid peroxidation and pathological swelling. Aromatic imines may be interesting lead structures for a potential antioxidant therapy of Parkinson's disease and other disorders accompanied by glutathione dysregulation.


Assuntos
Antioxidantes/farmacologia , Iminas/farmacologia , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Glutationa/deficiência , Humanos , Iminas/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Ratos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/fisiopatologia
18.
Neurosci Lett ; 451(2): 119-23, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19073233

RESUMO

Development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease is strongly age-associated. The impairment of calcium homeostasis is considered to be a key pathological event leading to neuronal dysfunction and cell death. However, the exact impact of aging on calcium homeostasis in neurons remains largely unknown. In the present work we have investigated intracellular calcium levels in cultured primary hippocampal neurons from young (2 months) and aged (24 months) rat brains. Upon stimulation with glutamate or hydrogen peroxide aged neurons in comparison to young neurons demonstrated an increased vulnerability to these disease-related toxins. Measurement of calpain activity using Western blot analysis showed a significant increase in basal activity of calpains in aged neurons. The observed increase of calpain activity was correlated with elevated protein levels of mu-calpain. Ca(2+)-imaging experiments performed on living individual neurons using the dye calcium green demonstrated a twofold increase in intracellular calcium concentration in aged neurons as compared to young neurons. The observed changes of intracellular calcium in aged neurons might play a role in their increased vulnerability to neurodegeneration.


Assuntos
Envelhecimento/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Senescência Celular/fisiologia , Hipocampo/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Animais , Calpaína/metabolismo , Células Cultivadas , Ácido Glutâmico/toxicidade , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/toxicidade , Degeneração Neural/fisiopatologia , Neurotoxinas/toxicidade , Compostos Orgânicos , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
19.
Eur J Pharm Sci ; 138: 105017, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356868

RESUMO

Development of opioid analgesics with minimal side effects requires substantial knowledge on structure-kinetic and -thermodynamic relationship of opioid-receptor interactions. Here, combined kinetics and thermodynamics of opioid agonist binding to human µ-opioid receptor (h-µOR) was investigated using real-time label-free surface plasmon resonance (SPR)-based method. The N-terminal end truncated and C-terminal 6His-tagged h-µOR was constructed and expressed in E. coli. Receptor was purified, detergent-solubilized and characterized by circular dichroism. The uniform immobilization of h-µOR on Ni-NTA chips was achieved using hybrid capture-coupling approach followed by reconstitution in lipid bilayer. Thermodynamic equilibrium affinities of opioids were in narrow nanomolar range and in near quantitative agreement with their Ki values. However, they did not correlate with their in vitro EC50 values, indicating that they might not have thermodynamic selectivity. Contrary, on and off rates exhibited much larger dispersion and well correlated with EC50 values, indicating that opioids might exhibit kinetic-selectivity towards their target. Temperature-dependent SPR assays provided access to rate and equilibrium thermodynamic data, which demonstrated binding of morphine and naloxone to µOR was exothermic and essentially enthalpy driven. This work suggests that kinetic-based structure-activity of opioids in drug design and incorporation into the pharmacokinetics-pharmacodynamics predictions may have more value than thermodynamic equilibrium constants alone.


Assuntos
Analgésicos Opioides/metabolismo , Receptores Opioides mu/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Humanos , Cinética , Morfina/metabolismo , Naloxona/metabolismo , Termodinâmica
20.
Acta Biochim Pol ; 66(4): 427-435, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584786

RESUMO

Mitochondria are key players in cell death through the activation of the intrinsic apoptosis pathway. BNIP3 and BNIP3L/Nix are outer mitochondrial membrane bifunctional proteins which because of containing both BH3 and LIR domains play a role in cellular response to stress by regulation of apoptosis and selective autophagy. Leber's Hereditary Optic Neuropathy (LHON) is the most common mitochondrial disease in adults, characterized by painless loss of vision caused by atrophy of the optic nerve. The disease in over 90% of cases is caused by one of three mutations in the mitochondrial genome: 11778G>A, 3460G>A or 14484T>C. The pathogenic processes leading to optic nerve degeneration are largely unknown, however, the most common explanation is that mtDNA mutations increase the apoptosis level in this tissue. Here we present the results of analysis of BNIP3 and BNIP3L/Nix proteins in cells harboring a combination of the 11778G>A and the 3460G>A LHON mutations. Experiments performed on cybrids revealed that BNIP3 protein level is decreased in LHON cells compared to controls. CCCP treatment resulted in apoptosis induction only in control cells. Moreover, we also noticed reduced level of autophagy in LHON cybrids. The presented results suggest that in cells carrying LHON mutations expression of proteins involved in regulation of apoptosis and autophagy is decreased what in turn may disturb cell death pathways in those cells and affect cellular response to stress.


Assuntos
Proteínas de Membrana/metabolismo , Mutação , Atrofia Óptica Hereditária de Leber/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Apoptose , Autofagia , Linhagem Celular , Genoma Mitocondrial/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Atrofia Óptica Hereditária de Leber/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA