Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 178(1): 221-230, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31368035

RESUMO

BACKGROUND: A better understanding underlying radiation (RT) response after breast-conserving surgery (BCS) is needed to mitigate over-treatment of DCIS. The hazard ratio (HR) measures the effect of RT but assumes the effect is constant over time. We examined the hazard function adjusted for adherence to surveillance mammography to examine variations in LR risk and the effect of RT over time. METHODS: Crude hazard estimates for the development of LR in a population cohort of DCIS treated by BCS ± RT were computed. Multivariable extended Cox models and hazard plots were used to examine the association between receipt of RT and risk of each outcome adjusted for baseline covariates and adherence to mammography. RESULTS: Population cohort includes 3262 women treated by BCS; 1635 received RT. Median follow-up was 13 years. LR developed in 364 women treated by BCS alone and 274 treated with RT. LR risk peaked at 2 years, declined until year 7, and then remained steady. The peak hazard of LR was associated with adverse features of DCIS. Early LR risk was attenuated in patients treated with RT but late annual risks of LR and invasive LR were similar among the two treatment groups. On multivariate analysis, RT was associated with a reduction in early LR risk (HR = 0.52, 95% CI 0.43-0.63, p < 0.0001) but did not reduce the risk of late LR (HR = 0.89, 95% CI: 0.67, 1.19, p = 0.44) (interaction, p = 0.002). CONCLUSIONS: The effect of RT is not uniform over time and greatest in the first 7 years after BCS for DCIS, which can guide future research to understand mechanisms underlying RT response and optimize future management of DCIS.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/terapia , Mastectomia Segmentar/métodos , Feminino , Humanos , Mamografia , Cooperação do Paciente , Vigilância da População , Modelos de Riscos Proporcionais , Radioterapia Adjuvante , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
2.
PLoS Comput Biol ; 13(9): e1005680, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28957325

RESUMO

Although systemic immunity is critical to the process of tumor rejection, cancer research has largely focused on immune cells in the tumor microenvironment. To understand molecular changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Interactions Across Tissues) to systematically explore and link molecular processes expressed in each tissue. MIxT confirmed that processes active in the patient SR are especially relevant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological processes are associated and their patterns of expression) varies highly with tumor subtype. For example, aspects of the immune SR are underexpressed proportionally to the level of expression of defined molecular processes specific to basal tumors. The catalog of subtype-specific interactions across tissues from BC patients provides promising new ways to tackle or monitor the disease by exploiting the patient SR.


Assuntos
Células Sanguíneas/fisiologia , Neoplasias da Mama/fisiopatologia , Microambiente Celular/fisiologia , Microambiente Tumoral/fisiologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Pessoa de Meia-Idade , Transdução de Sinais , Biologia de Sistemas
3.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495625

RESUMO

Gap junction transmembrane channels allow the transfer of small molecules between the cytoplasm of adjacent cells. They are formed by proteins named connexins (Cxs) that have long been considered as a tumor suppressor. This widespread view has been challenged by recent studies suggesting that the role of Connexin 43 (Cx43) in cancer is tissue- and stage-specific and can even promote tumor progression. High throughput profiling of invasive breast cancer has allowed for the construction of subtyping schemes that partition patients into at least four distinct intrinsic subtypes. This study characterizes Cx43 expression during cancer progression with each of the tumor subtypes using a compendium of publicly available gene expression data. In particular, we show that Cx43 expression depends greatly on intrinsic subtype. Tumor grade also co-varies with patient subtype, resulting in Cx43 co-expression with grade in a subtype-dependent manner. Better survival was associated with a high expression of Cx43 in unstratified and luminal tumors but with a low expression in Her2e subtype. A better understanding of Cx43 regulation in a subtype-dependent manner is needed to clarify the context in which Cx43 is associated with tumor suppression or cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Conexina 43/metabolismo , Animais , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Conexina 43/genética , Feminino , Junções Comunicantes/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Prognóstico , Transporte Proteico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
4.
PLoS Comput Biol ; 12(2): e1004738, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26871911

RESUMO

A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Biologia Computacional , Modelos Biológicos
5.
J Neurosci ; 35(21): 8042-58, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019323

RESUMO

One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 µm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 µm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 µm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving.


Assuntos
Cocaína/administração & dosagem , Fissura/fisiologia , Metilação de DNA/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Animais , Fissura/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração
6.
Proc Natl Acad Sci U S A ; 110(14): E1301-10, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509284

RESUMO

Triple-negative breast cancer (TNBC) accounts for ∼20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Met(mt)) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Met(mt) mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Met(mt), significantly increased tumor penetrance over Met(mt) or Trp53 loss alone. Unlike Met(mt) tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Met(mt) tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Claudinas/metabolismo , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/deficiência , Animais , Células Cultivadas , Feminino , Imunofluorescência , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Proteínas Proto-Oncogênicas c-met/genética
7.
BMC Cancer ; 15: 130, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884794

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play an important role in breast cancer pathogenesis by paracrine regulation of breast cancer cell biology. Several in vitro and mouse models have characterized the role of cell contact and cytokine molecules mediating this relationship, although few reports have used human CAFs from breast tumors. METHODS: Primary breast CAF cultures were established and gene expression profiles analysed in order to guide subsequent co-culture models. We used a combination of colorimetric proliferation assays and gene expression profiling to determine the effect of CAFs on the MCF-7 breast cancer cell in an indirect co-culture system. RESULTS: Using gene expression profiling, we found that a subgroup of breast CAFs are positive for a type one interferon response, confirming previous reports of an activated type one interferon response in whole tumor datasets. Interferon positive breast cancer patients show a poor prognostic outcome in an independent microarray dataset. In addition, CAFs positive for the type one interferon response promoted the growth of the MCF-7 breast cancer cell line in an indirect co-culture model. The addition of a neutralizing antibody against the ligand mediating the type one response in fibroblasts, interferon-ß, reverted this co-culture phenotype. CAFs not expressing the interferon response genes also promoted the growth of the MCF-7 breast cancer cell line but this phenotype was independent of the type one fibroblast interferon ligand. CONCLUSIONS: Primary breast CAFs show inter-patient molecular heterogeneity as evidenced by interferon response gene elements activated in a subgroup of CAFs, which result in paracrine pro-proliferative effects in a breast cancer cell line co-culture model.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Interferons/metabolismo , Neoplasias da Mama/genética , Técnicas de Cocultura/métodos , Estudos de Coortes , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Interferons/farmacologia , Células MCF-7
8.
Nature ; 461(7267): 1084-91, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19847259

RESUMO

The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Células Estromais/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Matriz Extracelular/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteína Proto-Oncogênica c-ets-2/deficiência , Proteína Proto-Oncogênica c-ets-2/metabolismo
9.
Int J Technol Assess Health Care ; 31(1-2): 36-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25991501

RESUMO

OBJECTIVES: There have been multiple calls for explicit integration of ethical, legal, and social issues (ELSI) in health technology assessment (HTA) and addressing ELSI has been highlighted as key in optimizing benefits in the Omics/Personalized Medicine field. This study examines HTAs of an early clinical example of Personalized Medicine (gene expression profile tests [GEP] for breast cancer prognosis) aiming to: (i) identify ELSI; (ii) assess whether ELSIs are implicitly or explicitly addressed; and (iii) report methodology used for ELSI integration. METHODS: A systematic search for HTAs (January 2004 to September 2012), followed by descriptive and qualitative content analysis. RESULTS: Seventeen HTAs for GEP were retrieved. Only three (18%) explicitly presented ELSI, and only one reported methodology. However, all of the HTAs included implicit ELSI. Eight themes of implicit and explicit ELSI were identified. "Classical" ELSI including privacy, informed consent, and concerns about limited patient/clinician genetic literacy were always presented explicitly. Some ELSI, including the need to understand how individual patients' risk tolerances affect clinical decision-making after reception of GEP results, were presented both explicitly and implicitly in HTAs. Others, such as concern about evidentiary deficiencies for clinical utility of GEP tests, occurred only implicitly. CONCLUSIONS: Despite a wide variety of important ELSI raised, these were rarely explicitly addressed in HTAs. Explicit treatment would increase their accessibility to decision-makers, and may augment HTA efficiency maximizing their utility. This is particularly important where complex Personalized Medicine applications are rapidly expanding choices for patients, clinicians and healthcare systems.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/ética , Medicina de Precisão/ética , Avaliação da Tecnologia Biomédica/ética , Avaliação da Tecnologia Biomédica/legislação & jurisprudência , Tomada de Decisões , Humanos
10.
Proc Natl Acad Sci U S A ; 109 Suppl 2: 17266-72, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23045659

RESUMO

Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, ß, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience.


Assuntos
Epigênese Genética , Hipocampo/fisiologia , Animais , Caderinas/genética , Criança , Maus-Tratos Infantis/psicologia , Metilação de DNA , Evolução Molecular , Interação Gene-Ambiente , Humanos , Acontecimentos que Mudam a Vida , Masculino , Família Multigênica , Ratos , Receptores de Glucocorticoides/genética , Especificidade da Espécie
11.
Carcinogenesis ; 35(11): 2436-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25178277

RESUMO

5-Aza-2'-deoxycytidine (5-azaCdR) not only inhibits growth of non-invasive breast cancer cells but also increases their invasiveness through induction of pro-metastatic genes. Methylated DNA binding protein 2 (MBD2) is involved in silencing methylated tumor suppressor genes as well as activation of pro-metastatic genes. In this study, we show that a combination of MBD2 depletion and DNA methyltransferases (DNMT) inhibition in breast cancer cells results in a combined effect in vitro and in vivo, enhancing tumor growth arrest on one hand, while inhibiting invasiveness triggered by 5-azaCdR on the other hand. The combined treatment of MBD2 depletion and 5-azaCdR suppresses and augments distinct gene networks that are induced by DNMT inhibition alone. These data point to a potential new approach in targeting the DNA methylation machinery by combination of MBD2 and DNMT inhibitors.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Proteínas de Ligação a DNA/biossíntese , Decitabina , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Terapia de Alvo Molecular , Invasividade Neoplásica/genética , Regiões Promotoras Genéticas
12.
Proc Natl Acad Sci U S A ; 108(5): 1949-54, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245318

RESUMO

Cell populations able to generate a large repertoire of genetic variants have increased potential to generate tumor cells that survive through the multiple selection steps involved in tumor progression. A mechanism for the generation of aneuploid cancer cells involves passage through a tetraploid stage. Supernumerary centrosomes, however, can lead to multipolar mitosis and cell death. Using tissue culture and transgenic mouse models of breast cancer, we report that Cut homeobox 1 (CUX1) causes chromosomal instability by activating a transcriptional program that prevents multipolar divisions and enables the survival of tetraploid cells that evolve to become genetically unstable and tumorigenic. Transcriptional targets of CUX1 involved in DNA replication and bipolar mitosis defined a gene expression signature that, across 12 breast cancer gene expression datasets, was associated with poor clinical outcome. The signature not only was higher in breast tumor subtypes of worse prognosis, like the basal-like and HER2(+) subtypes, but also identified poor outcome among estrogen receptor-positive/node-negative tumors, a subgroup considered to be at lower risk. The CUX1 signature therefore represents a unique criterion to stratify patients and provides insight into the molecular determinants of poor clinical outcome.


Assuntos
Ciclo Celular , Instabilidade Cromossômica/fisiologia , Proteínas de Homeodomínio/fisiologia , Mitose/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular , Replicação do DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição
13.
Proc Natl Acad Sci U S A ; 108(2): 774-9, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187396

RESUMO

Retinoic acid is a potent differentiation and antiproliferative agent of breast cancer cells, and one of its receptors, retinoic acid receptor ß (RARß), has been proposed to act as a tumor suppressor. In contrast, we report herein that inactivation of Rarb in the mouse results in a protective effect against ErbB2-induced mammary gland tumorigenesis. Strikingly, tissue recombination experiments indicate that the presence of Rarb in the stromal compartment is essential for the growth of mammary carcinoma. Ablation of Rarb leads to a remodeling of the stroma during tumor progression that includes a decrease in angiogenesis, in the recruitment of inflammatory cells, and in the number myofibroblasts. In agreement with this finding, we observed that a markedly reduced expression of chemokine (C-X-C motif) ligand 12 (Cxcl12) in the stroma of Rarb-null mice is accompanied by a decrease in the CXCL12/chemokine C-X-C receptor 4 (CXCR4)/ErbB2 signaling axis in the tumors. Relevance to the human disease is underlined by the finding that gene-expression profiling of the Rarb-deficient mammary stromal compartment identified an ortholog RARß signature in human microdissected breast tissues that differentiates tumor from normal stroma. Our study thus implicates RARß in promoting tumorigenesis and suggests that retinoid-based approaches for the prevention and treatment of breast cancer should be redesigned.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Receptores do Ácido Retinoico/metabolismo , Células Estromais/citologia , Animais , Quimiocina CXCL12/metabolismo , Feminino , Camundongos , Camundongos Transgênicos , Oncogenes , Receptor ErbB-2/metabolismo , Receptores CXCR4/metabolismo , Retinoides/química , Transdução de Sinais
14.
J Neurosci ; 32(44): 15626-42, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115197

RESUMO

Early-life adversity is associated with a broad scope of life-long health and behavioral disorders. Particularly critical is the role of the mother. A possible mechanism is that these effects are mediated by "epigenetic" mechanisms. Studies in rodents suggest a causal relationship between early-life adversity and changes in DNA methylation in several "candidate genes" in the brain. This study examines whether randomized differential rearing (maternal vs surrogate-peer rearing) of rhesus macaques is associated with differential methylation in early adulthood. The data presented here show that differential rearing leads to differential DNA methylation in both prefrontal cortex and T cells. These differentially methylated promoters tend to cluster by both chromosomal region and gene function. The broad impact of maternal rearing on DNA methylation in both the brain and T cells supports the hypothesis that the response to early-life adversity is system-wide and genome-wide and persists to adulthood. Our data also point to the feasibility of studying the impact of the social environment in peripheral T-cell DNA methylation.


Assuntos
Metilação de DNA/fisiologia , Privação Materna , Córtex Pré-Frontal/metabolismo , Linfócitos T/metabolismo , Animais , Sequência de Bases , Cromossomos/genética , DNA Complementar/metabolismo , Imunoprecipitação , Hibridização In Situ , Macaca mulatta , Masculino , Análise em Microsséries , Dados de Sequência Molecular , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Meio Social
15.
Carcinogenesis ; 34(12): 2738-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23955541

RESUMO

We previously delineated genes whose promoters are hypomethylated and induced in hepatocellular carcinoma (HCC) patients. The purpose of this study was to establish the players that regulate these genes in liver cancer cells. We performed chromatin immunoprecipitation with methyl-CpG-binding domain protein 2 (MBD2), RNA polymerase II (RNA pol II), CCAAT/enhancer-binding protein alpha (CEBPA) antibodies and methylated DNA immunoprecipitation in HepG2 liver cancer cells treated with scrambled small interfering RNA (siRNA) and siRNA to MBD2 or CEBPA. We then hybridized DNA to microarrays spanning the entire coding sequences, introns and regulatory regions of several hundred HCC-hypomethylated genes. These analyses reveal that MBD2 binds a significant fraction of the hypomethylated genes, determines RNA pol II binding and DNA methylation state. MBD2 binding can result in promoter activation and hypomethylation or in repression. In activated target genes, MBD2 colocalizes with the transcription factor CEBPA, and MBD2 binding at these positions is reduced upon CEBPA depletion. Significant fraction of MBD2 effects on DNA methylation and transcription appears to be indirect since changes occur upon MBD2 depletion in genes where no MBD2 binding was detected. Our study delineates the rules governing the interaction of MBD2 with its targets and the consequences to RNA pol II binding and DNA methylation states. This has important implications for understanding the role of DNA methylation in cancer and targeting DNA methylation proteins in cancer therapy.


Assuntos
Carcinogênese/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Neoplasias Hepáticas/patologia , Transcrição Gênica/genética , Sítios de Ligação/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética
16.
Elife ; 122023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37888959

RESUMO

Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.


Many drugs currently used to treat fungal diseases are becoming less effective. This is partly due to the rise of antifungal resistance, where certain fungal cells acquire mutations that enable them to thrive and proliferate despite the medication. Antifungal tolerance also contributes to this problem, wherein certain cells can continue to grow and multiply, while other ­ genetically identical ones ­ cannot. This variability is partly due to differences in gene expression within the cells. The specific nature of these differences has remained elusive, mainly because their study requires the use of expensive and challenging single-cell technologies. To address this challenge, Dumeaux et al. adapted an existing technique to perform single-cell transcriptomics in the pathogenic yeast Candida albicans. Their approach was cost effective and made it possible to examine the gene expression in thousands of individual cells within a population that had either been treated with antifungal drugs or were left untreated. After two to three days following exposure to the antifungal treatment, C. albicans cells commonly exhibited one of two states: one subgroup, the 'Ribo-dominant' cells, predominantly expressed genes for ribosomal proteins, while the other group, the 'Stress-dominant' cells, upregulated their expression of stress-response genes. This suggests that drug tolerance may be related to different gene expression patterns in growing cell subpopulations compared with non-growing subpopulations. The findings also indicate that the so-called 'ribosome assembly stress response' known to help baker's yeast cells to survive, might also aid C. albicans in surviving exposure to antifungal treatments. The innovative use of single-cell transcriptomics in this study could be applied to other species of fungi to study differences in cell communication under diverse growth conditions. Moreover, the unique gene expression patterns in C. albicans identified by Dumeaux et al. may help to design new antifungal treatments that target pathways linked to drug resistance.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Candida albicans/genética , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Mitocôndrias , Farmacorresistência Fúngica
17.
mBio ; : e0274523, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038475

RESUMO

IMPORTANCE: Candida albicans is a leading human fungal pathogen that often causes life-threatening infections in immunocompromised individuals. The ability of C. albicans to transition between yeast and filamentous forms is key to its virulence, and this occurs in response to many host-relevant cues, including engulfment by host macrophages. While previous efforts identified C. albicans genes required for filamentation in other conditions, the genes important for this morphological transition upon internalization by macrophages remained largely enigmatic. Here, we employed a functional genomic approach to identify genes that enable C. albicans filamentation within macrophages and uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex. Additionally, we showed that glucose uptake and glycolysis by macrophages support C. albicans filamentation. This work provides insights into the metabolic dueling that occurs during the interaction of C. albicans with macrophages and identifies vulnerabilities in C. albicans that could serve as promising therapeutic targets.

18.
Breast Cancer Res ; 14(4): R120, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22906178

RESUMO

INTRODUCTION: Angiogenesis represents a potential therapeutic target in breast cancer. However, responses to targeted antiangiogenic therapies have been reported to vary among patients. This suggests that the tumor vasculature may be heterogeneous and that an appropriate choice of treatment would require an understanding of these differences. METHODS: To investigate whether and how the breast tumor vasculature varies between individuals, we isolated tumor-associated and matched normal vasculature from 17 breast carcinomas by laser-capture microdissection, and generated gene-expression profiles. Because microvessel density has previously been associated with disease course, tumors with low (n = 9) or high (n = 8) microvessel density were selected for analysis to maximize heterogeneity for this feature. RESULTS: We identified differences between tumor and normal vasculature, and we describe two subtypes present within tumor vasculature. These subtypes exhibit distinct gene-expression signatures that reflect features including hallmarks of vessel maturity. Potential therapeutic targets (MET, ITGAV, and PDGFRß) are differentially expressed between subtypes. Taking these subtypes into account has allowed us to derive a vascular signature associated with disease outcome. CONCLUSIONS: Our results further support a role for tumor microvasculature in determining disease progression. Overall, this study provides a deeper molecular understanding of the heterogeneity existing within the breast tumor vasculature and opens new avenues toward the improved design and targeting of antiangiogenic therapies.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Neovascularização Patológica/genética , Neoplasias da Mama/terapia , Análise por Conglomerados , Feminino , Seguimentos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Avaliação de Resultados da Assistência ao Paciente , Prognóstico
19.
Breast Cancer Res ; 14(6): R149, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23174366

RESUMO

INTRODUCTION: Bone is the most common site of breast cancer metastasis, and complications associated with bone metastases can lead to a significantly decreased patient quality of life. Thus, it is essential to gain a better understanding of the molecular mechanisms that underlie the emergence and growth of breast cancer skeletal metastases. METHODS: To search for novel molecular mediators that influence breast cancer bone metastasis, we generated gene-expression profiles from laser-capture microdissected trephine biopsies of both breast cancer bone metastases and independent primary breast tumors that metastasized to bone. Bioinformatics analysis identified genes that are differentially expressed in breast cancer bone metastases compared with primary, bone-metastatic breast tumors. RESULTS: ABCC5, an ATP-dependent transporter, was found to be overexpressed in breast cancer osseous metastases relative to primary breast tumors. In addition, ABCC5 was significantly upregulated in human and mouse breast cancer cell lines with high bone-metastatic potential. Stable knockdown of ABCC5 substantially reduced bone metastatic burden and osteolytic bone destruction in mice. The decrease in osteolysis was further associated with diminished osteoclast numbers in vivo. Finally, conditioned media from breast cancer cells with reduced ABCC5 expression failed to induce in vitro osteoclastogenesis to the same extent as conditioned media from breast cancer cells expressing ABCC5. CONCLUSIONS: Our data suggest that ABCC5 functions as a mediator of breast cancer skeletal metastasis. ABCC5 expression in breast cancer cells is important for efficient osteoclast-mediated bone resorption. Hence, ABCC5 may be a potential therapeutic target for breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Osteoclastos/patologia , Animais , Osso e Ossos/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Osteólise/genética , Interferência de RNA , RNA Interferente Pequeno , Tomografia Computadorizada por Raios X
20.
PLoS Pathog ; 6(2): e1000753, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20140196

RESUMO

Candida albicans, the major fungal pathogen of humans, causes life-threatening infections in immunocompromised individuals. Due to limited available therapy options, this can frequently lead to therapy failure and emergence of drug resistance. To improve current treatment strategies, we have combined comprehensive chemical-genomic screening in Saccharomyces cerevisiae and validation in C. albicans with the goal of identifying compounds that can couple with the fungistatic drug fluconazole to make it fungicidal. Among the genes identified in the yeast screen, we found that only AGE3, which codes for an ADP-ribosylation factor GTPase activating effector protein, abrogates fluconazole tolerance in C. albicans. The age3 mutant was more sensitive to other sterols and cell wall inhibitors, including caspofungin. The deletion of AGE3 in drug resistant clinical isolates and in constitutively active calcineurin signaling mutants restored fluconazole sensitivity. We confirmed chemically the AGE3-dependent drug sensitivity by showing a potent fungicidal synergy between fluconazole and brefeldin A (an inhibitor of the guanine nucleotide exchange factor for ADP ribosylation factors) in wild type C. albicans as well as in drug resistant clinical isolates. Addition of calcineurin inhibitors to the fluconazole/brefeldin A combination only initially improved pathogen killing. Brefeldin A synergized with different drugs in non-albicans Candida species as well as Aspergillus fumigatus. Microarray studies showed that core transcriptional responses to two different drug classes are not significantly altered in age3 mutants. The therapeutic potential of inhibiting ARF activities was demonstrated by in vivo studies that showed age3 mutants are avirulent in wild type mice, attenuated in virulence in immunocompromised mice and that fluconazole treatment was significantly more efficacious when ARF signaling was genetically compromised. This work describes a new, widely conserved, broad-spectrum mechanism involved in fungal drug resistance and virulence and offers a potential route for single or improved combination therapies.


Assuntos
Fatores de Ribosilação do ADP/genética , Antifúngicos/farmacologia , Candida albicans/patogenicidade , Farmacorresistência Fúngica/genética , Virulência/genética , Fatores de Ribosilação do ADP/efeitos dos fármacos , Fatores de Ribosilação do ADP/metabolismo , Animais , Brefeldina A/farmacologia , Candida albicans/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Fluconazol/farmacologia , Expressão Gênica/efeitos dos fármacos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas do Sistema de Duplo-Híbrido , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA