RESUMO
BACKGROUND: Successful prevention of food allergy requires the identification of the factors adversely affecting the capacity to develop oral tolerance to food antigen in early life. OBJECTIVES: This study sought to determine whether oral exposure to Dermatophagoides pteronyssinus through breast milk affects gut mucosal immunity with long-term effects on IgE-mediated food allergy susceptibility. METHODS: Gut immunity was explored in 2-week-old mice breast-fed by mothers exposed to D pteronyssinus, protease-inactivated D pteronyssinus, or to PBS during lactation. We further analyzed oral tolerance to a bystander food allergen, ovalbumin (OVA). In a proof-of-concept study, Der p 1 and OVA levels were determined in 100 human breast milk samples and the association with prevalence of IgE-mediated egg allergy at 1 year was assessed. RESULTS: Increased permeability, IL-33 levels, type 2 innate lymphoid cell activation, and Th2 cell differentiation were found in gut mucosa of mice nursed by mothers exposed to D pteronyssinus compared with PBS. This pro-Th2 gut mucosal environment inhibited the induction of antigen-specific FoxP3 regulatory T cells and the prevention of food allergy by OVA exposure through breast milk. In contrast, protease-inactivated D pteronyssinus had no effect on offspring gut mucosal immunity. Based on the presence of Der p 1 and/or OVA in human breast milk, we identified groups of lactating mothers, which mirror the ones found in mice to be responsible for different egg allergy risk. CONCLUSIONS: This study highlights an unpredicted potential risk factor for the development of food allergy, that is, D pteronyssinus allergens in breast milk, which disrupt gut immune homeostasis and prevents oral tolerance induction to bystander food antigen through their protease activity.
Assuntos
Alérgenos/administração & dosagem , Antígenos de Dermatophagoides/administração & dosagem , Proteínas de Artrópodes/administração & dosagem , Cisteína Endopeptidases/administração & dosagem , Dermatophagoides pteronyssinus/imunologia , Hipersensibilidade a Ovo/imunologia , Leite/imunologia , Ovalbumina/administração & dosagem , Administração Oral , Adulto , Animais , Linfócitos T CD4-Positivos , Suscetibilidade a Doenças , Método Duplo-Cego , Feminino , Humanos , Imunoglobulina E/imunologia , Recém-Nascido , Interleucina-33 , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , GravidezRESUMO
The utility of human neuroblastoma cell lines as in vitro model to study neuro-invasiveness and neuro-virulence of SARS-CoV-2 has been demonstrated by our laboratory and others. The aim of this report is to further characterize the associated cellular responses caused by a pre-alpha SARS-CoV-2 strain on differentiated SH-SY5Y and to prevent its cytopathic effect by using a set of entry inhibitors. The susceptibility of SH-SY5Y to SARS-CoV-2 was confirmed at high multiplicity-of-infection, without viral replication or release. Infection caused a reduction in the length of neuritic processes, occurrence of plasma membrane blebs, cell clustering, and changes in lipid droplets electron density. No changes in the expression of cytoskeletal proteins, such as tubulins or tau, could explain neurite shortening. To counteract the toxic effect on neurites, entry inhibitors targeting TMPRSS2, ACE2, NRP1 receptors, and Spike RBD were co-incubated with the viral inoculum. The neurite shortening could be prevented by the highest concentration of camostat mesylate, anti-RBD antibody, and NRP1 inhibitor, but not by soluble ACE2. According to the degree of entry inhibition, the average amount of intracellular viral RNA was negatively correlated to neurite length. This study demonstrated that targeting specific SARS-CoV-2 host receptors could reverse its neurocytopathic effect on SH-SY5Y.
Assuntos
COVID-19 , Neuroblastoma , Humanos , Neuritos/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
Traumatic spinal cord injury (SCI) is a neurologic condition characterized by long-term motor and sensory neurologic deficits as a consequence of an external physical impact damaging the spinal cord. Anatomic MRI is considered the gold-standard diagnostic tool to obtain structural information for the prognosis of acute SCI; however, it lacks functional objective information to assess SCI progression and recovery. In this study, we explored the use of synaptic vesicle glycoprotein 2A (SV2A) PET imaging to detect spinal cord lesions noninvasively after SCI. Methods: Mice (n = 7) and rats (n = 8) subjected to unilateral moderate cervical (C5) contusion were euthanized 1 wk after SCI for histologic and autoradiographic (3H-labeled (4R)-1-[(3-methylpyridin-4-yl)methyl]-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one [UCB-J]) investigation of SV2A levels. Longitudinal 11C-UCB-J PET/CT imaging was performed in sham (n = 7) and SCI rats (n = 8) 1 wk and 6 wk after SCI. Animals also underwent an 18F-FDG PET scan during the latter time point. Postmortem tissue SV2A analysis to corroborate in vivo PET findings was performed 6 wk after SCI. Results: A significant SV2A loss (ranging from -70.3% to -87.3%; P < 0.0001) was measured at the epicenter of the impact in vitro in both mouse and rat contusion SCI models. Longitudinal 11C-UCB-J PET imaging detected SV2A loss in SCI rats (-49.0% ± 8.1% at 1 wk and -52.0% ± 12.9% at 6 wk after SCI), with no change observed in sham rats. In contrast, 18F-FDG PET imaging measured only subtle hypometabolism (-17.6% ± 14.7%). Finally, postmortem 3H-UCB-J autoradiography correlated with the in vivo SV2A PET findings (r = 0.92, P < 0.0001). Conclusion:11C-UCB-J PET/CT imaging is a noninvasive marker for SV2A loss after SCI. Collectively, these findings indicate that SV2A PET may provide an objective measure of SCI and thus represent a valuable tool to evaluate novel therapeutics. Clinical assessment of SCI with SV2A PET imaging is highly recommended.