Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345352

RESUMO

Olive oil (OO) is widely recognized as a main component in the Mediterranean diet owing to its unique chemical composition and associated health-promoting properties. This review aimed at providing readers with recent results on OO physicochemical profiling, extraction technology, and quality parameters specified by regulations to ensure authentic products for consumers. Recent research progress on OO adulteration were outlined through a bibliometric analysis mapping using Vosviewer software. As revealed by bibliometric analysis, richness in terms of fatty acids, pigments, polar phenolic compounds, tocopherols, squalene, sterols, and triterpenic compounds justify OO health-promoting properties and increasing demand on its global consumption. OO storage is a critical post-processing operation that must be optimized to avoid oxidation. Owing to its great commercial value on markets, OO is a target to adulteration with other vegetable oils. In this context, different chemometric tools were developed to deal with this problem. To conclude, increasing demand and consumption of OO on the global market is justified by its unique composition. Challenges such as oxidation and adulteration stand out as the main issues affecting the OO market.


Assuntos
Óleos de Plantas , Esqualeno , Azeite de Oliva/química , Óleos de Plantas/química , Esteróis , Controle de Qualidade
2.
Heliyon ; 10(14): e34002, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092262

RESUMO

This study explores novel applications of combining natural products by integrating Ziziphus lotus L. (Z. lotus), honey, and argan oil to create a product similar to traditional Moroccan Amlou (a mixture of almonds, honey, and argan oil). Five formulations were developed with varying percentages of these three ingredients, alongside two formulations of traditional Amlou. The nutritional value, mineral composition, fatty acid profile, bioactive compounds, and antioxidant activities of the products were analyzed using standard analytical methods such as gas chromatography and spectrophotometry. Additionally, sensory evaluations were conducted to assess consumer preferences. The results showed that the new formulations are rich in oil (45.15-52.24 g/100 g), carbohydrates (40.26-46.81 g/100 g), and protein (3.15-3.92 g/100 g). Mineral analysis revealed significant amounts of potassium (443-578 mg/100 g), calcium (98-124 mg/100 g), phosphorus (50-65 mg/100 g), and magnesium (38-50 mg/100 g). The Z. lotus-based products exhibited higher phenolic content (7-12 mg GAE/g), flavonoids (7.10-10.18 mg QE/g), and stronger antioxidant activities using DPPH radical scavenging activity (3.55-11.14 mg AAE/g) and FRAP (5.39-8.55 mg AAE/g). Moreover, the new product retains the beneficial fatty acid profile of argan oil, with a high content of oleic acid (48 %) and linoleic acid (32 %). Sensory evaluation indicated that the formulation consisting of 45 % Z. lotus powder, 50 % argan oil, and 5 % honey was the most appreciated for taste and texture. These findings suggest that incorporating Z. lotus into traditional Amlou recipes not only enhances nutritional and antioxidant properties but also meets consumer acceptance in terms of flavor and texture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA