Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nucleic Acids Res ; 51(20): 11291-11297, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811879

RESUMO

There are >170 naturally occurring RNA chemical modifications, with both known and unknown biological functions. Analytical methods for detecting chemical modifications and for analyzing their effects are relatively limited and have had difficulty keeping pace with the demand for RNA chemical biology and biochemistry research. Some modifications can affect the ability of RNA to hybridize with its complementary sequence or change the selectivity of base pairing. Here, we investigate the use of affinity-based DNA nanoswitches to resolve energetic differences in hybridization. We found that a single m3C modification can sufficiently destabilize hybridization to abolish a detection signal, while an s4U modification can selectively hybridize with G over A. These results establish proof of concept for using DNA nanoswitches to detect certain RNA modifications and analyzing their effects in base pairing stability and specificity.


Assuntos
DNA , RNA , Pareamento de Bases , Sequência de Bases , DNA/química , Hibridização de Ácido Nucleico , RNA/química
2.
RNA ; 26(9): 1118-1130, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32414856

RESUMO

Polyriboadenylic [poly(rA)] strands of sufficient length form parallel double helices in acidic and/or ammonium-containing conditions. Poly(rA) duplexes in acidic conditions are held together by A+-A+ base-pairing also involving base interactions with the phosphate backbone. Traditional UV-melting studies of parallel poly(A) duplexes have typically examined homo-duplex formation of a single nucleic acid species in solution. We have adapted a technique utilizing a DNA nanoswitch that detects interaction of two different strands either with similar or differing lengths or modifications. Our method detected parallel duplex formation as a function of length, chemical modifications, and pH, and at a sensitivity that required over 100-fold less concentration of sample than prior UV-melting methods. While parallel polyriboadenylic acid and poly-2'-O-methyl-adenylic acid homo-duplexes formed, we did not detect homo-duplexes of polydeoxyriboadenylic acid strands or poly-locked nucleic acid (LNA)-adenylic strands. Importantly however, a poly-locked nucleic acid (LNA)-adenylic strand, as well as a poly-2'-O-methyl-adenylic strand, formed a hetero-duplex with a polyriboadenylic strand. Overall, our work validates a new tool for studying parallel duplexes and reveals fundamental properties of poly(A) parallel duplex formation. Parallel duplexes may find use in DNA nanotechnology and in molecular biology applications such as a potential poly(rA) tail capture tool as an alternative to traditional oligo(dT) based purification.


Assuntos
DNA/genética , Poli A/genética , Pareamento de Bases/genética , Conformação de Ácido Nucleico , Oligonucleotídeos/genética
3.
Anal Bioanal Chem ; 414(20): 6009-6016, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35764806

RESUMO

The ever-growing demand for new drugs highlights the need to develop novel cost- and time-effective techniques for drug discovery. Surface-enhanced Raman spectroscopy (SERS) is an emerging ultrasensitive and label-free technique that allows for the efficient detection and characterization of molecular interactions. We have recently developed a SERS platform for detecting a single protein molecule linked to a gold substrate (Almehmadi et al. Scientific Reports 2019). In this study, we extended the approach to probe the binding of potential drugs to RNA targets. To demonstrate the proof of concept, two 16-amino acid residue peptides with close primary structures and different binding affinities to the RNA CUG repeat related to myotonic dystrophy were tested. Three-microliter solutions of the RNA repeat with these peptides at nanomolar concentrations were probed using the developed approach, and the binding of only one peptide was demonstrated. The SER spectra exhibited significant fluctuations along with a sudden strong enhancement as spectra were collected consecutively from individual spots. Principal component analysis (PCA) of the SER spectral datasets indicated that free RNA repeats could be differentiated from those complexed with a peptide with 100% accuracy. The developed SERS platform provides a novel opportunity for label-free screening of RNA-binding peptides for drug discovery. Schematic representation of the SERS platform for drug discovery developed in this study.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Descoberta de Drogas , Nanopartículas Metálicas/química , Peptídeos , RNA , Análise Espectral Raman/métodos
4.
Nano Lett ; 21(1): 469-475, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395311

RESUMO

Molecular biomarkers play a key role in the clinic, aiding in diagnostics and prognostics, and in the research laboratory, contributing to our basic understanding of diseases. Detecting multiple and diverse molecular biomarkers within a single accessible assay would have great utility, providing a more comprehensive picture for clinical evaluation and research, but is a challenge with standard methods. Here, we report programmable DNA nanoswitches for multiplexed detection of up to 6 biomarkers at once with each combination of biomarkers producing a unique barcode signature among 64 possibilities. As a defining feature of our method, we show "mixed multiplexing" for simultaneous barcoded detection of different types of biomolecules, for example, DNA, RNA, antibody, and protein in a single assay. To demonstrate clinical potential, we show multiplexed detection of a prostate cancer biomarker panel in serum that includes two microRNA sequences and prostate specific antigen.


Assuntos
DNA , MicroRNAs , Biomarcadores Tumorais/genética , DNA/genética , MicroRNAs/genética
6.
Biochemistry ; 60(4): 250-253, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464826

RESUMO

Nanoscale devices that can respond to external stimuli have potential applications in drug delivery, biosensing, and molecular computation. Construction using DNA has provided many such devices that can respond to cues such as nucleic acids, proteins, pH, light, or temperature. However, simultaneous control of molecular devices is still limited. Here, we present orthogonal control of DNA nanoswitches using physical (light) and biochemical (enzyme and nucleic acid) triggers. Each one of these triggers controls the reconfiguration of specific nanoswitches from locked to open states within a mixture and can be used in parallel to control a combination of nanoswitches. Such dynamic control over nanoscale devices allows the incorporation of tunable portions within larger structures as well as spatiotemporal control of DNA nanostructures.


Assuntos
DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
7.
Nucleic Acids Res ; 47(20): 10489-10505, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31287874

RESUMO

MicroRNAs are involved in the crucial processes of development and diseases and have emerged as a new class of biomarkers. The field of DNA nanotechnology has shown great promise in the creation of novel microRNA biosensors that have utility in lab-based biosensing and potential for disease diagnostics. In this Survey and Summary, we explore and review DNA nanotechnology approaches for microRNA detection, surveying the literature for microRNA detection in three main areas of DNA nanostructures: DNA tetrahedra, DNA origami, and DNA devices and motifs. We take a critical look at the reviewed approaches, advantages and disadvantages of these methods in general, and a critical comparison of specific approaches. We conclude with a brief outlook on the future of DNA nanotechnology in biosensing for microRNA and beyond.


Assuntos
DNA/química , MicroRNAs/análise , Técnicas de Diagnóstico Molecular/métodos , Nanotecnologia/métodos , Animais , Humanos , Nanopartículas/química
8.
Biophys J ; 119(11): 2231-2239, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121943

RESUMO

The ability to apply controlled forces to individual molecules has been revolutionary in shaping our understanding of biophysics in areas as diverse as dynamic bond strength, biological motor operation, and DNA replication. However, the methodology to perform single-molecule experiments remains relatively inaccessible because of cost and complexity. In 2010, we introduced the centrifuge force microscope (CFM) as a platform for accessible and high-throughput single-molecule experimentation. The CFM consists of a rotating microscope with which prescribed centrifugal forces can be applied to microsphere-tethered biomolecules. In this work, we develop and demonstrate a next-generation Wi-Fi CFM that offers unprecedented ease of use and flexibility in design. The modular CFM unit fits within a standard benchtop centrifuge and connects by Wi-Fi to an external computer for live control and streaming at near gigabit speeds. The use of commercial wireless hardware allows for flexibility in programming and provides a streamlined upgrade path as Wi-Fi technology advances. To facilitate ease of use, detailed build and setup instructions, as well as LabVIEW-based control software and MATLAB-based analysis software, are provided. We demonstrate the instrument's performance by analysis of force-dependent dissociation of short DNA duplexes of 7, 8, and 9 bp. We showcase the sensitivity of the approach by resolving distinct dissociation kinetic rates for a 7 bp duplex in which one G-C basepair is mutated to an A-T basepair.


Assuntos
DNA , Nanotecnologia , Pareamento de Bases , Centrifugação , Microscopia de Força Atômica
9.
J Am Chem Soc ; 142(14): 6814-6821, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32208657

RESUMO

Nanometer-sized features and molecular recognition properties make DNA a useful material for nanoscale construction, but degradation in biological fluids poses a considerable roadblock to biomedical applications of DNA nanotechnology. Here, we report the remarkable biostability of a multistranded motif called paranemic crossover (PX) DNA. Compared to double stranded DNA, PX DNA has dramatically enhanced (sometimes >1000 fold) resistance to degradation by four different nucleases, bovine and human serum, and human urine. We trace the cause of PX's biostability to DNA crossovers, showing a continuum of protection that scales with the number of crossovers. These results suggest that enhanced biostability can be engineered into DNA nanostructures by adopting PX-based architectures or by strategic crossover placement.


Assuntos
DNA/química , Nanotecnologia/métodos , Humanos , Modelos Moleculares , Motivos de Nucleotídeos
10.
J Chem Educ ; 97(5): 1448-1453, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33814597

RESUMO

There is a disconnect between the cutting-edge research done in academic labs, such as nanotechnology, and what is taught in undergraduate labs. In the current undergraduate curriculum, very few students get a chance to do hands-on experiments in nanotechnology-related experiments most of which are through selective undergraduate research programs. In most cases, complicated synthesis procedures, expensive reagents, and requirement of specific instrumentation prevent broad adaptation of nanotechnology-based experiments to laboratory courses. DNA, being a nanoscale molecule, has recently been used in bottom-up nanotechnology with applications in sensing, nano-robotics, and computing. In this article, we propose a simple experiment involving the synthesis of a DNA nanoswitch that can change its shape from a linear "off" state to a looped "on" state in the presence of a target DNA molecule. The experiment also demonstrates the programmable topology of the looped state of the nanoswitch and its effect on gel migration. The experiment is easy to adapt in an undergraduate laboratory, requires only agarose gel electrophoresis, a minimal set-up cost for materials, and can be completed in a 3-hour time frame.

11.
Nucleic Acids Res ; 45(19): 11459-11465, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977499

RESUMO

DNA serves as nature's information storage molecule, and has been the primary focus of engineered systems for biological computing and data storage. Here we combine recent efforts in DNA self-assembly and toehold-mediated strand displacement to develop a rewritable multi-bit DNA memory system. The system operates by encoding information in distinct and reversible conformations of a DNA nanoswitch and decoding by gel electrophoresis. We demonstrate a 5-bit system capable of writing, erasing, and rewriting binary representations of alphanumeric symbols, as well as compatibility with 'OR' and 'AND' logic operations. Our strategy is simple to implement, requiring only a single mixing step at room temperature for each operation and standard gel electrophoresis to read the data. We envision such systems could find use in covert product labeling and barcoding, as well as secure messaging and authentication when combined with previously developed encryption strategies. Ultimately, this type of memory has exciting potential in biomedical sciences as data storage can be coupled to sensing of biological molecules.


Assuntos
Computadores Moleculares , DNA Viral/química , Armazenamento e Recuperação da Informação/métodos , Nanoestruturas/química , Bacteriófago M13/genética , DNA Viral/genética , Eletroforese em Gel de Ágar , Reprodutibilidade dos Testes
12.
Nat Methods ; 12(2): 123-126, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486062

RESUMO

We introduce a nanoscale experimental platform that enables kinetic and equilibrium measurements of a wide range of molecular interactions using a gel electrophoresis readout. Programmable, self-assembled DNA nanoswitches serve both as templates for positioning molecules and as sensitive, quantitative reporters of molecular association and dissociation. We demonstrated this low-cost, versatile, 'lab-on-a-molecule' system by characterizing ten different interactions, including a complex four-body interaction with five discernible states.


Assuntos
DNA Circular/química , DNA de Cadeia Simples/química , Eletroforese em Gel de Poliacrilamida , Microfluídica , Nanotecnologia , Proteínas/química , Biotina/química , DNA Circular/metabolismo , DNA de Cadeia Simples/metabolismo , Cinética , Ligantes , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Biológicos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Ligação Proteica , Proteínas/metabolismo , Estreptavidina/química
13.
Anal Chem ; 89(11): 5673-5677, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28474522

RESUMO

As DNA nanotechnology matures, there is increasing need for fast, reliable, and automated purification methods. Here, we develop UHPLC methods to purify self-assembled DNA nanoswitches, which are formed using DNA origami approaches and are designed to change conformations in response to a binding partner. We found that shear degradation hindered LC purification of the DNA nanoswitches, removing oligonucleotides from the scaffold strand and causing loss of function. However, proper choice of column, flow rate, and buffers enabled robust and automated purification of DNA nanoswitches without loss of function in under a half hour. Applying our approach to DNA origami structures, we found that ∼400 nm long nanotubes degraded under the gentlest flow conditions while ∼40 nm diameter nanospheres remained intact even under aggressive conditions. These examples show how fluid stresses can affect different DNA nanostructures during LC purification and suggest that shear forces may be relevant for some applications of DNA nanotechnology. Further development of this approach could lead to fast and automated purification of DNA nanostructures of various shapes and sizes, which would be an important advance for the field.


Assuntos
Cromatografia Líquida de Alta Pressão , DNA/química , Conformação de Ácido Nucleico , Resistência ao Cisalhamento , Cromatografia Líquida de Alta Pressão/métodos , DNA/isolamento & purificação , Nanoestruturas , Nanotecnologia , Nanotubos
14.
Chembiochem ; 17(12): 1081-9, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-26928725

RESUMO

The use of DNA as a material for nanoscale construction has blossomed in the past decade. This is largely attributable to the DNA origami technique, which has enabled construction of nanostructures ranging from simple two-dimensional sheets to complex three-dimensional objects with defined curves and edges. These structures are amenable to site-specific functionalization with nanometer precision, and have been shown to exhibit cellular biocompatibility and permeability. The DNA origami technique has already found widespread use in a variety of emerging biological applications such as biosensing, enzyme cascades, biomolecular analysis, biomimetics, and drug delivery. We highlight a few of these applications and comments on the prospects for this rapidly expanding field of research.


Assuntos
DNA/química , Nanoestruturas/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Biomimética , Técnicas Biossensoriais , DNA/metabolismo , Portadores de Fármacos/química , Conformação de Ácido Nucleico , Proteínas/química , Proteínas/metabolismo
15.
Langmuir ; 32(24): 6028-34, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27219463

RESUMO

In just over a decade since its discovery, research on graphene has exploded due to a number of potential applications in electronics, materials, and medicine. In its water-soluble form of graphene oxide, the material has shown promise as a biosensor due to its preferential absorption of single-stranded polynucleotides and fluorescence quenching properties. The rational design of these biosensors, however, requires an improved understanding of the binding thermodynamics and ultimately a predictive model of sequence-specific binding. Toward these goals, here we directly measured the binding of nucleosides and oligonucleotides to graphene oxide nanoparticles using isothermal titration calorimetry and used the results to develop molecular models of graphene-nucleic acid interactions. We found individual nucleosides binding KD values lie in the submillimolar range with binding order of rG < rA < rC < dT < rU, while 5mer and 15mer oligonucleotides had markedly higher binding affinities in the range of micromolar and submicromolar KD values, respectively. The molecular models developed here are calibrated to quantitatively reproduce the above-mentioned experimental results. For oligonucleotides, our model predicts complex binding features such as double-stacked bases and a decrease in the fraction of graphene stacked bases with increasing oligonucleotide length until plateauing beyond ∼10-15 nucleotides. These experimental and computational results set the platform for informed design of graphene-based biosensors, further increasing their potential and application.

16.
Proc Natl Acad Sci U S A ; 109(40): E2649-56, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22984156

RESUMO

Replicating bacterial chromosomes continuously demix from each other and segregate within a compact volume inside the cell called the nucleoid. Although many proteins involved in this process have been identified, the nature of the global forces that shape and segregate the chromosomes has remained unclear because of limited knowledge of the micromechanical properties of the chromosome. In this work, we demonstrate experimentally the fundamentally soft nature of the bacterial chromosome and the entropic forces that can compact it in a crowded intracellular environment. We developed a unique "micropiston" and measured the force-compression behavior of single Escherichia coli chromosomes in confinement. Our data show that forces on the order of 100 pN and free energies on the order of 10(5) k(B)T are sufficient to compress the chromosome to its in vivo size. For comparison, the pressure required to hold the chromosome at this size is a thousand-fold smaller than the surrounding turgor pressure inside the cell. Furthermore, by manipulation of molecular crowding conditions (entropic forces), we were able to observe in real time fast (approximately 10 s), abrupt, reversible, and repeatable compaction-decompaction cycles of individual chromosomes in confinement. In contrast, we observed much slower dissociation kinetics of a histone-like protein HU from the whole chromosome during its in vivo to in vitro transition. These results for the first time provide quantitative, experimental support for a physical model in which the bacterial chromosome behaves as a loaded entropic spring in vivo.


Assuntos
Segregação de Cromossomos/fisiologia , Cromossomos Bacterianos/fisiologia , Escherichia coli/genética , Testes de Dureza/instrumentação , Dureza/fisiologia , Modelos Biológicos , Biofísica , Cromossomos Bacterianos/química , Entropia , Testes de Dureza/métodos , Pressão , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 109(48): 19626-31, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150586

RESUMO

Capture and isolation of flowing cells and particulates from body fluids has enormous implications in diagnosis, monitoring, and drug testing, yet monovalent adhesion molecules used for this purpose result in inefficient cell capture and difficulty in retrieving the captured cells. Inspired by marine creatures that present long tentacles containing multiple adhesive domains to effectively capture flowing food particulates, we developed a platform approach to capture and isolate cells using a 3D DNA network comprising repeating adhesive aptamer domains that extend over tens of micrometers into the solution. The DNA network was synthesized from a microfluidic surface by rolling circle amplification where critical parameters, including DNA graft density, length, and sequence, could readily be tailored. Using an aptamer that binds to protein tyrosine kinase-7 (PTK7) that is overexpressed on many human cancer cells, we demonstrate that the 3D DNA network significantly enhances the capture efficiency of lymphoblast CCRF-CEM cells over monovalent aptamers and antibodies, yet maintains a high purity of the captured cells. When incorporated in a herringbone microfluidic device, the 3D DNA network not only possessed significantly higher capture efficiency than monovalent aptamers and antibodies, but also outperformed previously reported cell-capture microfluidic devices at high flow rates. This work suggests that 3D DNA networks may have broad implications for detection and isolation of cells and other bioparticles.


Assuntos
DNA/fisiologia , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Humanos , Microfluídica
18.
Anal Biochem ; 465: 127-33, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124363

RESUMO

Measuring interactions between biological molecules is vitally important to both basic and applied research as well as development of pharmaceuticals. Although a wide and growing range of techniques is available to measure various kinetic and thermodynamic properties of interacting biomolecules, it can be difficult to compare data across techniques of different laboratories and personnel or even across different instruments using the same technique. Here we evaluate relevant biological interactions based on complementary DNA and RNA oligonucleotides that could be used as reference standards for many experimental systems. We measured thermodynamics of duplex formation using isothermal titration calorimetry, differential scanning calorimetry, and ultraviolet-visible (UV-vis) monitored denaturation/renaturation. These standards can be used to validate results, compare data from disparate techniques, act as a teaching tool for laboratory classes, or potentially to calibrate instruments. The RNA and DNA standards have many attractive features, including low cost, high purity, easily measurable concentrations, and minimal handling concerns, making them ideal for use as a reference material.


Assuntos
DNA/análise , Oligodesoxirribonucleotídeos/química , Oligorribonucleotídeos/química , RNA/análise , DNA/química , Hibridização de Ácido Nucleico/métodos , RNA/química , Padrões de Referência
19.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915531

RESUMO

DNA nanotechnology relies on programmable anchoring of regions of single-stranded DNA through base pair hybridization to create nanoscale objects such as polyhedra, tubes, sheets, and other desired shapes. Recent work from our lab measured energetics of base-stacking interactions and suggested that terminal stacking interactions between two adjacent strands could be an additional design parameter for DNA nanotechnology. Here, we explore that idea by creating DNA tetrahedra held together with sticky ends which contain identical base pairing interactions but different terminal stacking interactions. Testing all 16 possible combinations, we found that the melting temperature of DNA tetrahedra varied by up to 10 °C from altering a single base stack in the design while retaining a common sequence in a 6-nt sticky end. This work clearly shows that stacking design influences DNA tetrahedra stability in a substantial and predictable way. The results likely apply to other types of DNA nanostructures and suggest that terminal stacking interactions play an integral role in formation and stability of DNA nanostructures.

20.
ACS Synth Biol ; 12(4): 978-983, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36541933

RESUMO

DNA-based construction allows the creation of molecular devices that are useful in information storage and processing. Here, we combine the programmability of DNA nanoswitches and stimuli-responsive conformational changes to demonstrate information encoding and graphical readout using gel electrophoresis. We encoded information as 5-bit binary codes for alphanumeric characters using a combination of DNA and RNA inputs that can be decoded using molecular stimuli such as a ribonuclease. We also show that a similar strategy can be used for graphical visual readout of alphabets on an agarose gel, information that is encoded by nucleic acids and decoded by a ribonuclease. Our method of information encoding and processing could be combined with DNA actuation for molecular computation and diagnostics that require a nonarbitrary visual readout.


Assuntos
Computadores Moleculares , DNA , DNA/genética , RNA/genética , Armazenamento e Recuperação da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA