Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Geochem Health ; 45(8): 6543-6565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37338637

RESUMO

Artisanal and small-scale gold mining (ASGM) represents 20% of gold supply and 90% of gold mining workforce globally, which operates in highly informal setups. Pollutants from mined ores and chemicals introduced during gold processing pose occupational and inadvertent health risks to the extent that has not been well elucidated in Africa. Trace and major elements were analysed using inductively coupled plasma mass spectrometry in soil, sediment and water samples from 19 ASGM villages in Kakamega and Vihiga counties. Associated health risks for residents and ASGM workers were assessed. This paper focuses on As, Cd, Cr, Hg, Ni and Pb for which 96% of soil samples from mining and ore processing sites had As concentrations up to 7937 times higher than the US EPA 12 mg kg-1 standard for residential soils. Soil Cr, Hg and Ni concentrations in 98%, 49% and 68% of the samples exceeded respective USEPA and CCME standards, with 1-72% bioaccessibility. Twenty-five percentage of community drinking water sources were higher than the WHO 10 µg L-1 drinking water guideline. Pollution indices indicated significant enrichment and pollution of soils, sediment and water in decreasing order of As > Cr > Hg > Ni > Pb > Cd. The study revealed increased risks of non-cancer health effects (98.6) and cancer in adults (4.93 × 10-2) and children (1.75 × 10-1). The findings will help environment managers and public health authorities better understand the potential health risks in ASGM and support evidence-based interventions in ASGM processes, industrial hygiene and formulation of public health policy to protect residents and ASGM workers' health in Kenya.


Assuntos
Água Potável , Mercúrio , Adulto , Criança , Humanos , Ouro/análise , Cádmio/análise , Quênia , Água Potável/análise , Chumbo/análise , Mercúrio/análise , Mineração , Solo/química , Monitoramento Ambiental
2.
Environ Geochem Health ; 44(3): 893-909, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34115268

RESUMO

The occurrence of mercury (Hg) in the environment globally has been linked largely to its use for gold processing. In this research, ore samples, agricultural soil and mine wastes were taken within the vicinity of an artisanal gold mine and processing sites in Niger state, a north-central part of Nigeria to determine Hg contamination in the environment and estimate the potential hazard to health. The values of Hg measured in ore, agricultural soil and mine wastes ranged between 0.03 and 5.9, 0.002 and 5.57 and 0.19 and 20.99 mg/kg, respectively, with the majority of samples observed above the crustal average values of 0.003 mg/kg. All of the samples were 100 times greater than the USEPA residential soil screening level of 0.0023 mg/kg, but were lower than comparable mine sites within the same region. Contamination indices were used to demonstrate the potential exposure to Hg contamination in the study area which ranged from a medium to high level of contamination. Average daily dose and hazard quotient (HQ) were calculated for adults and children in the study area and decreased in the following order: ADDvapour > ADDingestion > ADDdermal > ADDinhalation. The non-carcinogenic health risk index (HI) of Hg calculated for children and adults in the study area was children: 7.42, 2.19, 1.49 and adults: 4.45, 1.26, 1.19, for mine wastes, agricultural soil and ore, respectively. All of these values were higher than a considered safe level (= 1) and therefore showed that Hg posed a serious non-carcinogenic HI for both adults and children exposed to the soil in the study area. The bioaccessible fraction as a measure of ingestion for Hg was generally < 13% across all sample matrices, suggesting a low bioaccessibility. An HQ incorporating bioaccessible data (BHQ) ranged between 0.000005 and 4.06 with a mean value of 0.62. Values for the BHQ were still > 1, threshold limit in some samples and showed that Hg could present a risk to health via ingestion, although further research is required to assess dermal and inhalation bioaccessibility to assess fully the risk to residents. However, the values were lower than the non-carcinogenic health risk index, which is assumed to be overestimated.


Assuntos
Mercúrio , Poluentes do Solo , Adulto , Criança , Monitoramento Ambiental , Ouro , Humanos , Mercúrio/análise , Níger , Nigéria , Medição de Risco , Solo , Poluentes do Solo/análise
3.
Environ Sci Technol ; 55(4): 2422-2429, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33497200

RESUMO

Conventional soil solution sampling of species-sensitive inorganic contaminants, such as hexavalent chromium (CrVI), may induce interconversions due to disruption of system equilibrium. The temporal resolution that these sampling methods afford may also be insufficient to capture dynamic interactions or require time-consuming and expensive analysis. Microdialysis (MD) is emerging as a minimally invasive passive sampling method in environmental science, permitting the determination of solute fluxes and concentrations at previously unobtainable spatial scales and time frames. This article presents the first use of MD coupled to high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the continuous sampling and simultaneous detection of CrVI in soil solution. The performance criteria of the system were assessed using stirred solutions; good repeatability of measurement (RSD < 2.5%) was obtained for CrVI, with a detection limit of 0.2 µg L-1. The online MD-HPLC-ICP-MS setup was applied to the sampling of native CrVI in three soils with differing geochemical properties. The system sampled and analyzed fresh soil solution at 15 min intervals, offering improved temporal resolution and a significant reduction in analysis time over offline MD. Simple modifications to the chromatographic conditions could resolve additional analytes, offering a powerful tool for the study of solute fluxes in soil systems to inform research into nutrient availability or soil-to-plant transfer of potentially harmful elements.


Assuntos
Cromo , Solo , Cromatografia Líquida de Alta Pressão , Cromo/análise , Espectrometria de Massas , Microdiálise , Plasma/química
4.
Environ Geochem Health ; 43(9): 3699-3713, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33751307

RESUMO

A field experiment was undertaken on farmers' fields adjacent to a large mine tailings dam in the Zambian mining town of Kitwe. Experimental plots were located close to the tailings (≤ 200 m) or further away (300-400 m) within the demarcated land farmed by the same community. This study evaluated the uptake of Cd, Cu, Ni, Pb and Zn by pumpkin leaves and maize grown in soil amended with lime and manure applied at agronomic rates, and the subsequent risk of dietary exposure to the local community, typical of many similar situations across the Zambian Copperbelt. Treatments, combinations of lime and manure (present or absent), were applied to subplots selected independently and randomly within each main plot, which represented variable geochemistry across this study site as a result of windblown/rain-driven dust from the tailings. Total elemental concentrations in crops were determined by ICP-MS following microwave-assisted acid digestion. Concentrations of Cu and Pb in pumpkin leaves were above the prescribed FAO/WHO safe limits by 60-205% and by 33-133%, respectively, while all five metals were below the limit for maize grain. Concentration of metals in maize grain was not affected by the amendments. However, lime at typical agronomic application rates significantly reduced concentrations of Cd, Cu, Pb and Zn in the pumpkin leaves by 40%, 33%, 19% and 10%, respectively, and for manure Cd reduced by 16%, while Zn increased by 35%. The uptake of metals by crops in locations further from the tailings was greater than closer to the tailings because of greater retention of metals in the soil at higher soil pH closer to the tailings. Crops in season 2 had greater concentrations of Cu, Ni, Pb and Zn than in season 1 due to diminished lime applied only in season 1, in line with common applications on a biannual basis. Maize as the staple crop is safe to grow in this area while pumpkin leaves as a readily available commonly consumed leafy vegetable may present a hazard due to accumulation of Cu and Pb above recommended safe limits.


Assuntos
Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Mineração , Solo , Poluentes do Solo/análise , Zâmbia
5.
Environ Geochem Health ; 43(1): 259-271, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32862269

RESUMO

Zinc (Zn) is an essential micronutrient, and Zn deficiency remains a major global public health challenge. Recognised biomarkers of population Zn status include blood plasma or serum Zn concentration and proxy data such as dietary Zn intake and prevalence of stunting. Urine Zn concentration is rarely used to assess population Zn status. This study assessed the value of urine Zn concentration as a biomarker of population Zn status using a nationally representative sample of non-pregnant women of reproductive age (WRA) and school-aged children (SAC) in Malawi. Spot (casual) urine samples were collected from 741 WRA and 665 SAC. Urine Zn concentration was measured by inductively coupled plasma mass spectrometry with specific gravity adjustment for hydration status. Data were analysed using a linear mixed model with a spatially correlated random effect for between-cluster variation. The effect of time of sample collection (morning or afternoon), and gender (for SAC), on urine Zn concentration were examined. There was spatial dependence in urine Zn concentration between clusters among SAC but not WRA, which indicates that food system or environmental factors can influence urine Zn concentration. Mapping urine Zn concentration could potentially identify areas where the prevalence of Zn deficiency is greater and thus where further sampling or interventions might be targeted. There was no evidence for differences in urine Zn concentration between gender (P = 0.69) or time of sample collection (P = 0.85) in SAC. Urine Zn concentration was greater in afternoon samples for WRA (P = 0.003). Relationships between urine Zn concentration, serum Zn concentration, dietary Zn intake, and potential food systems covariates warrant further study.


Assuntos
Micronutrientes/urina , Zinco/urina , Adolescente , Adulto , Biomarcadores/urina , Criança , Feminino , Humanos , Malaui , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Análise Espacial , Adulto Jovem
6.
Environ Geochem Health ; 42(4): 1197-1209, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31317372

RESUMO

Potentially harmful elements (PHEs) manganese (Mn), cobalt (Co), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) were measured in human hair/nails, staple crops and drinking water to ascertain the level of exposure to dust transference via wind and rain erosion for members of the Mugala community living near a mine waste dump in the Zambian Copperbelt. The mean PHE concentrations of hair in decreasing order were Zn (137 ± 21 mg/kg), Cu (38 ± 7 mg/kg), Mn (16 ± 2 mg/kg), Pb (4.3 ± 1.9 mg/kg), Ni (1.3 ± 0.2 mg/kg) and Cr (1.2 ± 0.2 mg/kg), Co (0.9 ± 0.2 mg/kg) and Cd (0.30 ± 0.02 mg/kg). Whilst for toenails the decreasing order of mean concentrations was Zn (172 ± 27 mg/kg), Cu (30 ± 5 mg/kg), Mn (12 ± 2 mg/kg), Pb (4.8 ± 0.5 mg/kg), Ni (1.7 ± 0.14 mg/kg) and Co (1.0 ± 0.02 mg/kg), Cr (0.6 ± 0.1 mg/kg) and Cd (0.1 ± 0.002 mg/kg). The concentration of these potentially harmful elements (PHEs) varied greatly among different age groups. The results showed that Mn, Co, Pb, Cd and Zn were above the interval values (Biolab in Nutritional and environmental medicine, Hair Mineral Analysis, London, 2012) at 0.2-2.0 mg/kg for Mn, 0.01-0.20 mg/kg for Co, < 2.00 mg/kg for Pb, < 0.10 mg/kg for Cd and 0.2-2.00 mg/kg for Zn, whilst Ni, Cu and Cr concentrations were within the normal range concentrations of < 1.40 mg/kg, 10-100 mg/kg and 0.1-1.5 mg/kg, respectively. Dietary intake of PHEs was assessed from the ingestion of vegetables grown in Mugala village, with estimated PHE intakes expressed on a daily basis calculated for Mn (255), Pb (48), Ni (149) and Cd (33) µg/kg bw/day. For these metals, DI via vegetables was above the proposed limits of the provisional tolerable daily intakes (PTDIs) (WHO in Evaluation of certain food additive and contaminants, Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives, 2011) for Mn at 70 µg/kg bw/day, Pb at 3 µg/kg bw/day, Ni and Cd 5 µg/kg bw/day and 1 µg/kg bw/day, respectively. The rest of the PHEs listed were within the PTDIs limits. Therefore, Mugala inhabitants are at imminent health risk due to lead, nickel and cadmium ingestion of vegetables and drinking water at this location.


Assuntos
Exposição Ambiental/análise , Cabelo/química , Metais/análise , Unhas/química , Adolescente , Adulto , Criança , Exposição Dietética/análise , Água Potável/análise , Poeira/análise , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Humanos , Verduras , Instalações de Eliminação de Resíduos , Adulto Jovem , Zâmbia
7.
Environ Geochem Health ; 39(4): 835-845, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27438079

RESUMO

Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg-1, dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg-1, and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg-1, dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied greatly, and this was likely due to contamination of rice samples with soil. Risk of As, Cd or Pb toxicity due to rice consumption in Malawi appears to be minimal.


Assuntos
Elementos Químicos , Oryza/química , Ácido Fítico/análise , Arsênio/administração & dosagem , Arsênio/toxicidade , Cádmio/análise , Cádmio/toxicidade , Cálcio/análise , Cobre/análise , Deficiências Nutricionais/etiologia , Humanos , Iodo/análise , Ferro/análise , Chumbo/análise , Chumbo/toxicidade , Magnésio/análise , Malaui , Manganês/análise , Ácido Fítico/efeitos adversos , Selênio/análise , Solo , Poluentes do Solo , Espectrometria de Massas em Tandem , Zinco/análise
8.
Anal Methods ; 16(17): 2669-2677, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38623773

RESUMO

Analysis of mercury (Hg) in natural water samples has routinely been impractical in many environments, for example, artisanal and small-scale gold mines (ASGM), where difficult conditions make monitoring of harmful elements and chemicals used in the processes highly challenging. Current sampling methods require the use of hazardous or expensive materials, and so difficulties in sample collection and transport are elevated. To solve this problem, a solid-phase extraction-based method was developed for the sampling and preservation of dissolved Hg in natural water samples, particularly those found around ASGM sites. Recoveries of 85% ± 10% total Hg were obtained during 4 weeks of storage in refrigerated (4 °C, dark) and unrefrigerated (16 °C, dark) conditions, and from a representative river water spiked to 1 µg L-1 Hg2+, 94% ± 1% Hg recovery was obtained. Solid-phase extraction loading flow rates were tested at 2, 5, and 10 mL min-1 with no breakthrough of Hg, and sorbent stability showed no breakthrough of Hg up to 2 weeks after functionalisation. The method was deployed across five artisanal gold mines in Kakamega gold belt, Kenya, to assess Hg concentrations in mine shaft water, ore washing ponds, and river and stream water, including drinking water sources. In all waters, Hg concentrations were below the WHO guideline limit value of 6 µg L-1, but drinking water sources contained trace concentrations of up to 0.35 µg L-1 total Hg, which may result in negative health effects from long-term exposure. The SPE method developed and deployed here is a robust sampling method that can therefore be applied in future Hg monitoring, toxicology, and environmental work to provide improved data that is representative of total dissolved Hg in water samples.

9.
Environ Sci Process Impacts ; 25(3): 351-363, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36723022

RESUMO

Mercury is considered to be one of the most toxic elements to humans. Due to pollution from industry and artisanal gold mining, mercury species are present globally in waters used for agriculture, aquaculture, and drinking water. This review summarises methods reported for preserving mercury species in water samples and highlights the associated hazards and issues with each. This includes the handling of acids in an uncontrolled environment, breakage of sample containers, and the collection and transport of sample volumes in excess of 1 L, all of which pose difficulties for both in situ collection and transportation. Literature related to aqueous mercury preservation from 2000-2021 was reviewed, as well as any commonly cited and relevant references. Amongst others, solid-phase extraction techniques were explored for preservation and preconcentration of total and speciated mercury in water samples. Additionally, the potential as a safe, in situ preservation and storage method for mercury species were summarised. The review highlighted that the stability of mercury is increased when adsorbed on a solid-phase and therefore the metal and its species can be preserved without the need for hazardous reagents or materials in the field. The mercury species can then be eluted upon return to a laboratory, where sensitive analytical detection and speciation methods can be better applied. Developments in solid phase extraction as a preservation method for unstable metals such as mercury will improve the quality of representative environmental data, and further improve toxicology and environmental monitoring studies.


Assuntos
Mercúrio , Poluentes Químicos da Água , Humanos , Mercúrio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água , Ouro
10.
J Trace Elem Med Biol ; 61: 126514, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32305625

RESUMO

BACKGROUND: Chromium (Cr) exists in the environment in two chemical forms; CrIII is an essential micronutrient for glucose and lipid metabolism, whereas CrVI is toxic and a recognised carcinogen through inhalation. Numerous studies have attempted to evaluate their transfer mechanisms from soil and solution media into plants, usually with respect to the hyperaccumulation, detoxification and tolerance of the plant to CrVI. METHODS: Isotopically enriched species of Cr, added as 50CrIII and 53CrVI, were used to investigate transfer from solution into the root systems of Spinacia oleracea. In addition the effect of sulphate (SO42-), as a competitor for CrVI uptake, was investigated. Separation of 50CrIII and 53CrVI was undertaken using HPLC-ICP-QQQ following isolation of root solutions using freeze/thaw centrifugation. RESULTS: Irrespective of supplied CrVI concentration (250, 500 or 1000 µg L-1), the dominant species in both apoplastic (routed through cell wall and intercellular space as a passive mechanism) and symplastic (routed through cytoplasm as an active mechanism) root solutions was CrIII. There was evidence for CrVI reduction in the rhizosphere prior to uptake as an additional detoxification mechanism. Sulphate promoted uptake of CrVI through the active pathway, although increases in SO42- concentration did not yield a proportional increase in Cr symplastic solution concentration; CrIII was also the dominant species in these root solutions. CONCLUSION: The results indicate that Spinacia oleracea plants can effectively reduce CrVI to CrIII and that the uptake pathways for both CrIII and CrVI are more complex than previously reported. Further work is required to understand the physiological processes that result in the reduction of CrVI prior to, and during, uptake. The efficacy of sulphate to augment existing agricultural management strategies, such as liming and organic reincorporation, also requires further investigation to establish suitable application rates and applicability to other environmental contaminants.

11.
Chemosphere ; 247: 125984, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32079057

RESUMO

The distribution of elemental species of chromium (Cr) in potentially-contaminated soil samples warrants investigation due to the differing mobilities and toxicities of trivalent [Cr(III)] and hexavalent chromium [(Cr(VI)]. In addition, the possibility of species interconversions requires the implementation of robust methods that can correct for changes at the point of sampling, extraction and analysis. This work presents the application of speciated isotope dilution mass spectrometry (SIDMS) to accurately quantify Cr(VI) in agricultural soils within close proximity to a mine tailings dam in the Copperbelt Province of Zambia. Interpolated plots of total Cr, produced from data collected through a nested sampling design, were used to optimise the sampling across the spatial domain. Extraction of Cr(VI) was undertaken using a microwave assisted reaction system (80 °C for 5 min) with 50 mM EDTA, to complex Cr(III) and reduce the likelihood of oxidation during the extraction. Isotopically-enriched 53Cr(VI) was added to each sample prior to extraction to account for species interconversions. The accuracy of the method was confirmed using NIST SRM 2700 and 2701. Cr(VI) concentrations in the soil samples ranged between 0.03 and 0.29 mg kg-1, significantly lower than the residential UK screening value for Cr(VI) of 21 mg kg-1. The data indicate that this site poses a low environmental/human health risk with respect to Cr(VI) exposure.


Assuntos
Cromo/análise , Poluição Ambiental/análise , Poluentes do Solo/análise , Agricultura , Humanos , Espectrometria de Massas/métodos , Oxirredução , Solo/química , Zâmbia
12.
Heliyon ; 6(11): e05502, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33251364

RESUMO

This study presents an analysis of the effects of manure and lime commonly used to improve agricultural productivity and evaluates the potential for such soil amendments to mobilise/immobilise metal fractions in soils contaminated from nearby mine tailings in the Zambian Copperbelt. Lime and manure were applied at the onset of the study, and their effects were studied over two planting seasons, i.e. 2016-17 and 2017-18. Operationally defined plant-available Cd, Cu, Ni, Pb and Zn in the soil, were determined by extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) and 0.01 M Ca(NO3)2, before, and after, applying the amendments. In unamended soils, Cd was the most available and Ni the least. Lime application decreased extractable Cd, Cu, Ni, Pb and Zn. The response to lime was greater in soils with an initially acidic pH than in those with approximately neutral pH values. Manure increased DTPA extractable Zn, but decreased DTPA and Ca(NO3)2 extractable Cd, Cu and Pb. Combined lime and manure amendment exhibited a greater reduction in DTPA extractable Cd, Ni, Pb, Zn, as well as for Ca(NO3)2 extractable Cd compared to separate applications of lime and manure. The amendments had a significant residual effect on most of the soil fractions between season 1 and 2. The results obtained in this study showed that soil amendment with minimal lime and manure whilst benefiting agricultural productivity, may significantly reduce the mobility or plant availability of metals from contaminated agricultural soils. This is important in contaminated, typical tropical soils used for crop production by resource poor communities affected by mining or other industrial activities.

13.
Environ Int ; 134: 105218, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715489

RESUMO

Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable biomarker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n = 1406) were collected from a nationally representative sample of women of reproductive age (WRA, n =741) and school aged children (SAC, n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been measured for the same survey participants. There was between-cluster variation in urine Se concentration that corresponded with variation in plasma Se concentration, but not between households within a cluster, or between individuals within a household. Corrected urine Se concentrations explained more of the between-cluster variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective option if urine samples are already being collected for other assessments, such as for iodine status analysis as in the Malawi and other national Demographic and Health Surveys.


Assuntos
Selênio/análise , Biomarcadores , Criança , Creatinina , Feminino , Humanos , Iodo , Estado Nutricional
14.
Sci Rep ; 9(1): 6445, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015581

RESUMO

Micronutrient deficiencies remain prevalent in food systems of southern Africa, although advances in biofortification through crop breeding and agronomy provide opportunities to address these. We determined baseline soil availability of zinc (Zn) and iron (Fe) and the effects of soil type and farmer management on extractable soil Zn and Fe and subsequent concentration in cereal and legume grains under two contrasting agro-ecologies in Zimbabwe. Soil and crop surveys were conducted in Hwedza and Mutasa Districts of Zimbabwe in 2015-16 on 350 locations over different soil types. Fields with different levels of productivity (designated as "most" and "least" productive fields) were sampled using an inherited hierarchical randomized sampling design. Grain Zn and Fe concentration in maize (Zea mays), sorghum (Sorghum bicolor), finger millet (Eleusine coracana) and cowpea (Vigna unguiculata) were generally insufficient for adequate human nutrition. A Linear Mixed Effects (LME) model revealed that diethylene triamine penta-acetic acid- (DTPA) extractable soil Zn concentration and grain Zn concentration were affected primarily by field productivity level. DTPA-extractable soil Zn concentration was more than two-fold greater on the most productive fields (mean 0.8 mg kg-1) than on the least productive fields, with mean grain Zn concentration of 25.2 mg grain Zn kg-1 which was 13% greater than seen on the least productive fields.  An interaction effect of field productivity level and total soil Zn concentration on DTPA-extractable soil Zn concentration suggests potential contribution of organic matter management to unlocking unavailable forms of soil Zn. DTPA-extractable soil Fe and grain Fe concentration were primarily affected by soil type and crop type, respectively. The LME modelling approach revealed additional soil geochemical covariates affected DTPA-extractable soil Zn and Fe concentration and grain Zn and Fe concentration within Districts. Future studies can therefore be powered to detect their roles at wider spatial scales for sustainable management of crop Zn and Fe nutrition.

15.
Sci Rep ; 9(1): 14447, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595016

RESUMO

Soil, water and food supply composition data have been combined to primarily estimate micronutrient intakes and subsequent risk of deficiencies in each of the regions studied by generating new data to supplement and update existing food balance sheets. These data capture environmental influences, such as soil chemistry and the drinking water sources to provide spatially resolved crop and drinking water composition data, where combined information is currently limited, to better inform intervention strategies to target micronutrient deficiencies. Approximately 1500 crop samples were analysed, representing 86 food items across 50 sites in Tanzania in 2013 and >230 sites in Western Kenya between 2014 and 2018. Samples were analysed by ICP-MS for 58 elements, with this paper focussing on calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se), iodine (I), zinc (Zn) and molybdenum (Mo). In general, micronutrient supply from food groups was higher from Kilimanjaro,Tanzania than Counties in Western Kenya, albeit from a smaller sample. For both countries leafy vegetable and vegetable food groups consistently contained higher median micronutrient concentrations compared to other plant based food groups. Overall, calculated deficiency rates were <1% for Cu and Mo and close to or >90% for Ca, Zn and I in both countries. For Mg, a slightly lower risk of deficiency was calculated for Tanzania at 0 to 1% across simplified soil classifications and for female/males, compared to 3 to 20% for Kenya. A significant difference was observed for Se, where a 3 to 28% risk of deficiency was calculated for Tanzania compared to 93 to 100% in Kenya. Overall, 11 soil predictor variables, including pH and organic matter accounted for a small proportion of the variance in the elemental concentration of food. Tanzanian drinking water presented several opportunities for delivering greater than 10% of the estimated average requirement (EAR) for micronutrients. For example, 1 to 56% of the EAR for I and up to 10% for Se or 37% for Zn could be contributed via drinking water.


Assuntos
Dieta , Água Potável/química , Micronutrientes/análise , Solo/química , Produtos Agrícolas/química , Análise de Alimentos , Humanos , Quênia , Minerais/análise , Tanzânia
16.
J Expo Sci Environ Epidemiol ; 29(3): 335-343, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30242267

RESUMO

Element deficiencies and excesses play important roles in non-communicable disease aetiology. When investigating their roles in epidemiologic studies without prospective designs, reverse-causality limits the utility of transient biomarkers in cases. This study aimed to investigate whether surrogate participants may provide viable proxies by assessing concentration correlations within households. We obtained spot urine samples from 245 Tanzanian and Kenyan adults (including 101 household pairs) to investigate intra-household correlations of urinary elements (As, Ba, Ca, Cd, Co, Cs, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, S, Se, Sr, Tl, V and Zn) and concentrations (also available for: Bi, Ce, Sb, Sn and U) relative to external population-levels and health-based values. Moderate-strong correlations were observed for As (r = 0.65), Cs (r = 0.67), Li (r = 0.56), Mo (r = 0.57), Se (r = 0.68) and Tl (r = 0.67). Remaining correlations were <0.41. Median Se concentrations in Tanzania (29 µg/L) and Kenya (24 µg/L) were low relative to 5738 Canadians (59 µg/L). Exceedances (of reference 95th percentiles) were observed for: Co, Mn, Mo, Ni and U. Compared to health-based values, exceedances were present for As, Co, Mo and Se but deficiencies were also present for Mo and Se. For well correlated elements, household members in East African settings provide feasible surrogate cases to investigate element deficiencies/excesses in relation to non-communicable diseases.


Assuntos
Características da Família , Oligoelementos/urina , Adolescente , Adulto , Idoso , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Humanos , Quênia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tanzânia , Adulto Jovem
17.
Food Chem ; 250: 105-112, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412899

RESUMO

Numerous critical reviews have evaluated exposure to toxic and carcinogenic hexavalent chromium (Cr(VI)) from a number of pathways; including workplace air, cement and packaging materials. The contribution of foodstuffs to dietary Cr(VI) has been increasingly under investigation, however no summary of this work has been carried out. The objective of this article is to review the last twenty years of chromium speciation research in foodstuffs. Alkaline extraction, used for chromium speciation in other solids, is the most widely-reported procedure. Previous measurement of Cr(VI) in foodstuffs is questionable due to the reducing power of organic matter and antioxidants, leading to the development of speciated isotope dilution mass spectrometry (SIDMS) techniques to monitor interconversions. Evaluation of the genotoxicity of trivalent chromium (Cr(III)), which acts through a different pathway to that of Cr(VI), requires reconsideration towards measurement of Cr(III), which is present at higher concentrations in foodstuffs following reduction of the more-bioavailable Cr(VI).


Assuntos
Cromo/análise , Cromo/química , Poluentes Ambientais/análise , Poluentes Ambientais/química , Análise de Alimentos/métodos , Contaminação de Alimentos/análise
18.
Environ Sci Process Impacts ; 19(4): 517-527, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28247892

RESUMO

Exposure to arsenic (As) via residential soil and dust is a global concern, in regions affected by mining or with elevated concentrations present in underlying geology. Cornwall in south west England is one such area. Residential soil (n = 127) and household dust (n = 99) samples were collected from across Cornwall as part of a wider study assessing exposure to environmental As. Samples were analysed for total As (soil and dust samples) and human ingestion bioaccessible As (soil samples from properties with home-grown produce). Arsenic concentrations ranged from 12 to 992 mg kg-1 in soil and 3 to 1079 mg kg-1 in dust and were significantly higher in areas affected by metalliferous mineralisation. Sixty-nine percent of soils exceeded the 37 mg kg-1 Category 4 Screening Level (C4SL), a generic assessment criteria for As in residential soils in England, which assumes 100% bioavailability following ingestion. The proportion of exceedance was reduced to 13% when the bioavailability parameter in the CLEA model was changed to generate household specific bioaccessibility adjusted assessment criteria (ACBIO). These criteria were derived using bioaccessibility data for a sub-set of individual household vegetable patch soils (n = 68). Proximity to former As mining locations was found to be a significant predictor of soil As concentration. This study highlights the value of bioaccessibility measurements and their potential for adjusting generic assessment criteria.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Arsênio/análise , Poeira/análise , Monitoramento Ambiental , Mineração , Poluentes do Solo/análise , Inglaterra , Habitação , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA