Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(16): 4912-4919, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638387

RESUMO

Meeting end-of-century global warming targets requires aggressive action on multiple fronts. Recent reports note the futility of addressing mitigation goals without fully engaging the agricultural sector, yet no available assessments combine both nature-based solutions (reforestation, grassland and wetland protection, and agricultural practice change) and cellulosic bioenergy for a single geographic region. Collectively, these solutions might offer a suite of climate, biodiversity, and other benefits greater than either alone. Nature-based solutions are largely constrained by the duration of carbon accrual in soils and forest biomass; each of these carbon pools will eventually saturate. Bioenergy solutions can last indefinitely but carry significant environmental risk if carelessly deployed. We detail a simplified scenario for the United States that illustrates the benefits of combining approaches. We assign a portion of non-forested former cropland to bioenergy sufficient to meet projected mid-century transportation needs, with the remainder assigned to nature-based solutions such as reforestation. Bottom-up mitigation potentials for the aggregate contributions of crop, grazing, forest, and bioenergy lands are assessed by including in a Monte Carlo model conservative ranges for cost-effective local mitigation capacities, together with ranges for (a) areal extents that avoid double counting and include realistic adoption rates and (b) the projected duration of different carbon sinks. The projected duration illustrates the net effect of eventually saturating soil carbon pools in the case of most strategies, and additionally saturating biomass carbon pools in the case of forest management. Results show a conservative end-of-century mitigation capacity of 110 (57-178) Gt CO2 e for the U.S., ~50% higher than existing estimates that prioritize nature-based or bioenergy solutions separately. Further research is needed to shrink uncertainties, but there is sufficient confidence in the general magnitude and direction of a combined approach to plan for deployment now.


Assuntos
Agricultura , Clima , Agricultura/métodos , Biomassa , Carbono , Sequestro de Carbono , Solo , Estados Unidos
2.
Environ Sci Technol ; 54(5): 2961-2974, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32052964

RESUMO

Climate mitigation scenarios limiting global temperature increases to 1.5 °C rely on decarbonizing vehicle transport with bioenergy production plus carbon capture and storage (BECCS), but climate impacts for producing different bioenergy feedstocks have not been directly compared experimentally or for ethanol vs electric light-duty vehicles. A field experiment at two Midwest U.S. sites on contrasting soils revealed that feedstock yields of seven potential bioenergy cropping systems varied substantially within sites but little between. Bioenergy produced per hectare reflected yields: miscanthus > poplar > switchgrass > native grasses ≈ maize stover (residue) > restored prairie ≈ early successional. Greenhouse gas emission intensities for ethanol vehicles ranged from 20 to -179 g CO2e MJ-1: maize stover ≫ miscanthus ≈ switchgrass ≈ native grasses ≈ poplar > early successional ≥ restored prairie; direct climate benefits ranged from ∼80% (stover) to 290% (restored prairie) reductions in CO2e compared to petroleum and were similar for electric vehicles. With carbon capture and storage (CCS), reductions in emission intensities ranged from 204% (stover) to 416% (restored prairie) for ethanol vehicles and from 329 to 558% for electric vehicles, declining 27 and 15%, respectively, once soil carbon equilibrates within several decades of establishment. Extrapolation based on expected U.S. transportation energy use suggests that, once CCS potential is maximized with CO2 pipeline infrastructure, negative emissions from bioenergy with CCS for light-duty electric vehicles could capture >900 Tg CO2e year-1 in the U.S. In the future, as other renewable electricity sources become more important, electricity production from biomass would offset less fossil fuel electricity, and the advantage of electric over ethanol vehicles would decrease proportionately.


Assuntos
Clima , Panicum , Biomassa , Carbono , Combustíveis Fósseis
3.
Sensors (Basel) ; 20(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143097

RESUMO

Assessment of inundation patterns across large and remote floodplains is challenging and costly. Inexpensive loggers that record the damping of the diel amplitude of temperature (DAT) when submerged compared to overlying air can indirectly indicate inundation. We assessed the efficacy of this approach in tropical, subtropical, and temperate floodplains by comparing direct water level measurements using pressure transducers with the indirect indication of inundation ascertained from the DAT at the same location. The approach worked better in tropical than in subtropical and temperate floodplains. However, the relatively small DATs of air in humid and densely vegetated settings made estimation of inundation more challenging compared to the drier and less vegetated settings, where a large diel range of air temperature was markedly damped beneath the water. The indirect temperature approach must be calibrated for a particular ecosystem using direct water-level measurements to define DAT thresholds that are indicative of submergence of the sensors. Temperature provides an inexpensive indicator of duration of inundation that can be particularly useful in studies of large and remote floodplains, although the development of inexpensive sensors that directly measure submergence (e.g., by resistivity) will likely become a better option in the future.

4.
Eur J Clin Microbiol Infect Dis ; 38(6): 1171-1178, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859358

RESUMO

Faster respiratory pathogen detection and antibiotic resistance identification are important in critical care due to the severity of illness, significant prior antibiotic exposure and infection control implications. Our objective was to compare the performance of the commercial Unyvero P55 Pneumonia Cartridge (Curetis AG) with routine bacterial culture methods and in-house bacterial multiplex real-time PCR assays. Seventy-four bronchoalveolar lavage specimens from patients admitted to a Scottish intensive care unit (ICU) over a 33-month period were tested prospectively by routine culture and viral PCR and retrospectively by Unyvero P55 and in-house bacterial PCR. Sensitivity/specificity was 56.9%/58.5% and 63.2%/54.8% for the Unyvero P55 and in-house bacterial PCR panels respectively; sensitivity for in-panel targets was 63.5 and 83.7% respectively. Additional organisms were detected by Unyvero P55 and in-house bacterial PCR panels in 16.2% specimens. Antibiotics were changed on the basis of routine test results in 48.3% cases; of these, true-positive or true-negative results would have been obtained earlier by Unyvero P55 or in-house bacterial PCR panel in 15 (53.6%) and 17 (60.7%) cases respectively. However, a false-negative molecular test result may have been acted upon in six (21.4%) cases with either assay. Sensitivity/specificity of Unyvero P55 antibiotic resistance detection was 18.8%/94.9% respectively. Molecular testing identified a number of respiratory pathogens in this patient cohort that were not grown in culture, but resistance detection was not a reliable tool for faster antibiotic modification. In their current set-up, molecular tests may only have benefit as additional tests in the ICU pneumonia setting.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas/normas , Líquido da Lavagem Broncoalveolar/microbiologia , Resistência Microbiana a Medicamentos/genética , Reação em Cadeia da Polimerase Multiplex/normas , Pneumonia/diagnóstico , Adulto , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Testes Diagnósticos de Rotina , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Glob Chang Biol ; 24(12): 5948-5960, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295393

RESUMO

Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater-irrigated corn (maize)-soybean-wheat, no-till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2 -equivalent (CO2 e) costs of fossil fuel power, soil emissions of nitrous oxide (N2 O), and degassing of supersaturated CO2 and N2 O from the groundwater. A rainfed reference system had a net mitigating effect of -13.9 (±31) g CO2 e m-2  year-1 , but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2 e m-2  year-1 . Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation-associated increase in soil N2 O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2 and N2 O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2 e kg-1 yield, close to that of the rainfed system, which was -0.03 (±0.002) kg CO2 e kg-1 yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources.


Assuntos
Agricultura , Aquecimento Global , Gases de Efeito Estufa , Água Subterrânea , Irrigação Agrícola , Agricultura/métodos , Dióxido de Carbono/análise , Produtos Agrícolas , Meio-Oeste dos Estados Unidos , Óxido Nitroso/análise , Solo , Triticum , Zea mays
6.
Ecol Appl ; 28(5): 1362-1369, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29856901

RESUMO

Land use conversions into and out of agriculture may influence soil-atmosphere greenhouse gas fluxes for many years. We tested the legacy effects of land use on cumulative soil nitrous oxide (N2 O) fluxes for 5 yr following conversion of 22-yr-old Conservation Reserve Program (CRP) grasslands and conventionally tilled agricultural fields (AGR) to continuous no-till corn, switchgrass, and restored prairie. An unconverted CRP field served as a reference. We assessed the labile soil C pool of the upper 10 cm in 2009 (the conversion year) and in 2014 using short-term soil incubations. We also measured in situ soil N2 O fluxes biweekly from 2009 through 2014 using static chambers except when soils were frozen. The labile C pool was approximately twofold higher in soils previously in CRP than in those formerly in tilled cropland. Five-year cumulative soil N2 O emissions were approximately threefold higher in the corn system on former CRP than on former cropland despite similar fertilization rates (~184 kg N·ha-1 ·yr-1 ). The lower cumulative emissions from corn on former cropland were similar to emissions from switchgrass that was fertilized less (~57 kg N·ha-1 ·yr-1 ), regardless of former land use, and lowest emissions were observed from the unfertilized restored prairie and reference systems. Findings support the hypothesis that soil labile carbon levels modulate the response of soil N2 O emissions to nitrogen inputs, with soils higher in labile carbon but otherwise similar, in this case reflecting land use history, responding more strongly to added nitrogen.


Assuntos
Produtos Agrícolas , Pradaria , Óxido Nitroso/análise , Poluentes do Solo/análise , Solo/química , Agricultura , Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise , Michigan , Nitrogênio/análise
8.
Ecol Appl ; 27(5): 1657-1665, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28401624

RESUMO

Climate change is driving large changes in the spatial and temporal distributions of species, with significant consequences for individual populations. Community- and ecosystem-level implications of altered species distributions may be complex and challenging to anticipate due to the cascading effects of disrupted interactions among species, which may exhibit threshold responses to extreme climatic events. Toxic, bloom-forming cyanobacteria like Microcystis are expected to increase worldwide with climate change, due in part to their high temperature optima for growth. In addition, invasive zebra mussels (Dreissena polymorpha) have caused an increase in Microcystis aeruginosa, a species typically associated with eutrophication, in low-nutrient lakes. We conducted a 13-yr study of a M. aeruginosa population in a low-nutrient lake invaded by zebra mussels. In 10 of the 13 years, there was a significant positive relationship between M. aeruginosa biomass and accumulated degree days, which are projected to increase with climate change. In contrast, Microcystis biomass was up to an order of magnitude lower than predicted by the above relationship during the other three years, including the warmest in the data set, following repeated heat-induced mass mortality of D. polymorpha. Thus, the positive relationship between Microcystis biomass and temperature was negated when its facilitating species was suppressed during a series of exceptionally warm summers. Predicting the net response of a species to climate change may therefore require, at minimum, quantification of responses of both the focal species and species that strongly interact with it over sufficiently long time periods to encompass the full range of climatic variability. Our results could not have been predicted from existing data on the short-term responses of these two interacting species to increased temperature.


Assuntos
Mudança Climática , Dreissena/fisiologia , Temperatura Alta , Lagos , Microcystis/fisiologia , Animais , Eutrofização , Espécies Introduzidas , Michigan
9.
Ecology ; 96(3): 684-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26236865

RESUMO

Biotic communities are shaped by adaptations from generations of exposure to selective pressures by recurrent and often infrequent events. In large rivers, floods can act as significant agents of change, causing considerable physical and biotic disturbance while often enhancing productivity and diversity. We show that the relative balance between these seemingly divergent outcomes can be explained by the rhythmicity, or predictability of the timing and magnitude, of flood events. By analyzing biological data for large rivers that span a gradient of rhythmicity in the Neotropics and tropical Australia, we find that systems with rhythmic annual floods have higher-fish species richness, more stable avian populations, and elevated rates of riparian forest production compared with those with arrhythmic flood pulses. Intensification of the hydrological cycle driven by climate change, coupled with reductions in runoff due to water extractions for human use and altered discharge from impoundments, is expected to alter the hydrologic rhythmicity of floodplain rivers with significant consequences for both biodiversity and productivity.


Assuntos
Biodiversidade , Aves/fisiologia , Ecossistema , Peixes/fisiologia , Inundações , Florestas , Animais , Austrália , Mudança Climática , México , Rios , América do Sul
10.
Bioscience ; 64(5): 404-415, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955069

RESUMO

A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers-especially those with large farms-appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant.

11.
Nature ; 452(7184): 202-5, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18337819

RESUMO

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Assuntos
Ecossistema , Atividades Humanas , Nitratos/análise , Nitratos/metabolismo , Nitritos/análise , Nitritos/metabolismo , Rios/química , Agricultura , Bactérias/metabolismo , Simulação por Computador , Geografia , Nitrogênio/análise , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Plantas/metabolismo , Urbanização
12.
Proc Natl Acad Sci U S A ; 108(33): 13864-9, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825117

RESUMO

Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn-soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO(2) equivalents (CO(2)e)·ha(-1) that included agronomic inputs, changes in C stocks, altered N(2)O and CH(4) fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO(2)e·ha(-1) if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO(2)e·ha(-1) on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn-soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion.


Assuntos
Ração Animal , Carbono/metabolismo , Conservação dos Recursos Naturais/métodos , Efeito Estufa/prevenção & controle , Biocombustíveis , Celulose , Produtos Agrícolas , Programas Governamentais , Estados Unidos
13.
Proc Natl Acad Sci U S A ; 108(1): 214-9, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173258

RESUMO

Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.e., the N(2)O yield) is an important determinant of how much N(2)O is produced by river networks, but little is known about the N(2)O yield in flowing waters. Here, we present the results of whole-stream (15)N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N(2)O at rates that increase with stream water nitrate (NO(3)(-)) concentrations, but that <1% of denitrified N is converted to N(2)O. Unlike some previous studies, we found no relationship between the N(2)O yield and stream water NO(3)(-). We suggest that increased stream NO(3)(-) loading stimulates denitrification and concomitant N(2)O production, but does not increase the N(2)O yield. In our study, most streams were sources of N(2)O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y(-1) of anthropogenic N inputs to N(2)O in river networks, equivalent to 10% of the global anthropogenic N(2)O emission rate. This estimate of stream and river N(2)O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.


Assuntos
Desnitrificação/fisiologia , Monitoramento Ambiental/estatística & dados numéricos , Efeito Estufa , Óxido Nitroso/metabolismo , Rios/química , Monitoramento Ambiental/métodos , Espectrometria de Massas , Modelos Teóricos , Isótopos de Nitrogênio/análise , Estados Unidos
15.
Oecologia ; 168(3): 829-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21983712

RESUMO

High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (~2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.


Assuntos
Peixes/fisiologia , Cadeia Alimentar , Rios , Animais , Inundações , Oceanos e Mares , Dinâmica Populacional , Queensland , Movimentos da Água
16.
Front Plant Sci ; 13: 1023571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684783

RESUMO

Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photosynthetic decline in switchgrass (Panicum virgatum L.) with water availability by comparing plants experiencing ambient rainfall with plants in a rainfall exclusion experiment in Michigan, USA. For switchgrass exposed to ambient rainfall, daily net CO2 assimilation ( A n e t ' ) declined from 0.9 mol CO2 m-2 day-1 in early summer to 0.43 mol CO2 m-2 day-1 in late summer (53% reduction; P<0.0001). Under rainfall exclusion shelters, soil water content was 73% lower and A n e t ' was 12% and 26% lower in July and September, respectively, compared to those of the rainfed plants. Despite these differences, the seasonal photosynthetic decline was similar in the season-long rainfall exclusion compared to the rainfed plants; A n e t ' in switchgrass under the shelters declined from 0.85 mol CO2 m-2 day-1 in early summer to 0.39 mol CO2 m-2 day-1 (54% reduction; P<0.0001) in late summer. These results suggest that while water deficit limited A n e t ' late in the season, abundant late-season rainfalls were not enough to restore A n e t ' in the rainfed plants to early-summer values suggesting water deficit was not the sole driver of the decline. Alongside change in photosynthesis, starch in the rhizomes increased 4-fold (P<0.0001) and stabilized when leaf photosynthesis reached constant low values. Additionally, water limitation under shelters had no negative effects on the timing of rhizome starch accumulation, and rhizome starch content increased ~ 6-fold. These results showed that rhizomes also affect leaf photosynthesis during the growing season. Towards the end of the growing season, when vegetative growth is completed and rhizome reserves are filled, diminishing rhizome sink activity likely explained the observed photosynthetic declines in plants under both ambient and reduced water availability.

17.
Science ; 375(6582): 753-760, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175810

RESUMO

Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth's largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins.

18.
Ecol Appl ; 21(4): 1055-67, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21774413

RESUMO

The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater pollution, soil organic matter loss, and a warming atmosphere. The conversion of marginal lands not now farmed to annual grain production, including the repatriation of Conservation Reserve Program (CRP) and other conservation set-aside lands, will further exacerbate the biogeochemical imbalance of these landscapes, as could pressure to further simplify crop rotations. The expected emergence of biorefinery and combustion facilities that accept cellulosic materials offers an alternative outcome: agricultural landscapes that accumulate soil carbon, that conserve nitrogen and phosphorus, and that emit relatively small amounts of nitrous oxide to the atmosphere. Fields in these landscapes are planted to perennial crops that require less fertilizer, that retain sediments and nutrients that could otherwise be transported to groundwater and streams, and that accumulate carbon in both soil organic matter and roots. If mixed-species assemblages, they additionally provide biodiversity services. Biogeochemical responses of these systems fall chiefly into two areas: carbon neutrality and water and nutrient conservation. Fluxes must be measured and understood in proposed cropping systems sufficient to inform models that will predict biogeochemical behavior at field, landscape, and regional scales. Because tradeoffs are inherent to these systems, a systems approach is imperative, and because potential biofuel cropping systems and their environmental contexts are complex and cannot be exhaustively tested, modeling will be instructive. Modeling alternative biofuel cropping systems converted from different starting points, for example, suggests that converting CRP to corn ethanol production under conventional tillage results in substantially increased net greenhouse gas (GHG) emissions that can be only partly mitigated with no-till management. Alternatively, conversion of existing cropland or prairie to switchgrass production results in a net GHG sink. Outcomes and policy must be informed by science that adequately quantifies the true biogeochemical costs and advantages of alternative systems.


Assuntos
Agricultura/métodos , Biocombustíveis , Carbono/química , Ecossistema , Nitrogênio/química , Água/química , Ciclo do Carbono , Mudança Climática , Fenômenos Geológicos , Modelos Teóricos , Ciclo do Nitrogênio , Abastecimento de Água/normas
19.
Sci Rep ; 11(1): 20367, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645938

RESUMO

Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha-1 year-1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March-November 2009-2016 using tension lysimeters. Soil test P (0-25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L-1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha-1 year-1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management.

20.
Sci Rep ; 11(1): 23117, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848778

RESUMO

All animals carry specialized microbiomes, and their gut microbiota are continuously released into the environment through excretion of waste. Here we propose the meta-gut as a novel conceptual framework that addresses the ability of the gut microbiome released from an animal to function outside the host and alter biogeochemical processes mediated by microbes. We demonstrate this dynamic in the hippopotamus (hippo) and the pools they inhabit. We used natural field gradients and experimental approaches to examine fecal and pool water microbial communities and aquatic biogeochemistry across a range of hippo inputs. Sequencing using 16S RNA methods revealed community coalescence between hippo gut microbiomes and the active microbial communities in hippo pools that received high inputs of hippo feces. The shared microbiome between the hippo gut and the waters into which they excrete constitutes a meta-gut system that could influence the biogeochemistry of recipient ecosystems and provide a reservoir of gut microbiomes that could influence other hosts. We propose that meta-gut dynamics may also occur where other animal species congregate in high densities, particularly in aquatic environments.


Assuntos
Artiodáctilos/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Animais , Bactérias/genética , Ecossistema , Água Doce/microbiologia , Funções Verossimilhança , Modelos Lineares , Filogenia , RNA Ribossômico 16S/metabolismo , Rios , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA