Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 35(12): 1330-45, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27103070

RESUMO

Agonist-triggered downregulation of ß-adrenergic receptors (ARs) constitutes vital negative feedback to prevent cellular overexcitation. Here, we report a novel downregulation of ß2AR signaling highly specific for Cav1.2. We find that ß2-AR binding to Cav1.2 residues 1923-1942 is required for ß-adrenergic regulation of Cav1.2. Despite the prominence of PKA-mediated phosphorylation of Cav1.2 S1928 within the newly identified ß2AR binding site, its physiological function has so far escaped identification. We show that phosphorylation of S1928 displaces the ß2AR from Cav1.2 upon ß-adrenergic stimulation rendering Cav1.2 refractory for several minutes from further ß-adrenergic stimulation. This effect is lost in S1928A knock-in mice. Although AMPARs are clustered at postsynaptic sites like Cav1.2, ß2AR association with and regulation of AMPARs do not show such dissociation. Accordingly, displacement of the ß2AR from Cav1.2 is a uniquely specific desensitization mechanism of Cav1.2 regulation by highly localized ß2AR/cAMP/PKA/S1928 signaling. The physiological implications of this mechanism are underscored by our finding that LTP induced by prolonged theta tetanus (PTT-LTP) depends on Cav1.2 and its regulation by channel-associated ß2AR.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Adrenérgicos beta 2/metabolismo , Animais , Camundongos , Fosforilação
2.
Sci Signal ; 12(562)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600260

RESUMO

l-Glutamate is the main excitatory neurotransmitter in the brain, with postsynaptic responses to its release predominantly mediated by AMPA-type glutamate receptors (AMPARs). A critical component of synaptic plasticity involves changes in the number of responding postsynaptic receptors, which are dynamically recruited to and anchored at postsynaptic sites. Emerging findings continue to shed new light on molecular mechanisms that mediate AMPAR postsynaptic trafficking and localization. Accordingly, unconventional secretory trafficking of AMPARs occurs in dendrites, from the endoplasmic reticulum (ER) through the ER-Golgi intermediary compartment directly to recycling endosomes, independent of the Golgi apparatus. Upon exocytosis, AMPARs diffuse in the plasma membrane to reach the postsynaptic site, where they are trapped to contribute to transmission. This trapping occurs through a combination of both intracellular interactions, such as TARP (transmembrane AMPAR regulatory protein) binding to α-actinin-stabilized PSD-95, and extracellular interactions through the receptor amino-terminal domain. These anchoring mechanisms may facilitate precise receptor positioning with respect to glutamate release sites to enable efficient synaptic transmission.


Assuntos
Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/fisiologia , Animais , Dendritos/metabolismo , Dendritos/fisiologia , Humanos , Transporte Proteico , Sinapses/metabolismo , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA