RESUMO
A novel Gram-stain-negative, yellow-pigmented, non-motile and rod-shaped bacterial strain designated MMS21-Er5T was isolated and subjected to polyphasic taxonomic characterization. MMS21- Er5T could grow at 4-34 °C (optimum, 30 °C), at pH 6-8 (optimum, pH 7) and in the presence of 0-2% NaCl (optimum, 1â%). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that MMS21- Er5T showed low levels of sequence similarities with other species, as the highest similarity of 97.83â% was observed with Flavobacterium tyrosinilyticum THG DN8.8T, then 97.68â% with 'Flavobacterium ginsengiterrae' DCY 55 and 97.63â% with Flavobacterium banpakuense 15F3T, which were well below the suggested cutoff for species distinction. The whole genome sequence of MMS21-Er5T consisted of a single contig of 5.63 Mbp, and the DNA G+C content was 34.06 mol%. The in-silico DNA-DNA hybridization and orthologous average nucleotide identity values were highest with Flavobacterium tyrosinilyticum KCTC 42726T (45.7 and 91.92% respectively). The predominant respiratory quinone for the strain was menaquinone-6 (MK-6), the major cellular fatty acid was iso-C15â:â0, and the diagnostic polar lipids were phosphatidylethanolamine and phosphatidyldiethanolamine. The combination of physiological and biochemical tests clearly distinguished the strain from related species of the genus Flavobacterium. On the basis of these results, strain MMS21-Er5T evidently represents a novel species of the genus Flavobacterium, for which the name Flavobacterium humidisoli sp. nov. is proposed (type strain=MMS21-Er5T=KCTC 92256T =LMG 32524T).
Assuntos
Ácidos Graxos , Flavobacterium , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem BacterianaRESUMO
A Gram-stain-negative, strictly aerobic, oxidase-positive, catalase-negative, motile by gliding, creamy white-pigmented bacterium, designated strain S2-8T, isolated from a sediment sample from a Wiyang pond in the Republic of Korea, was subjected to polyphasic taxonomic analysis. Growth was observed at 10-40 °C (optimum: 30 °C), pH 7-8 and 0-0.5% NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain S2-8T belonged to the family Sphingobacteriaceae in the phylum Bacteroidota and was closely related to Solitalea longa HR-AVT, Solitalea canadensis DSM 3403T and Solitalea koreensis R2A36-4T with 97.2, 96.7 and 93.7â% 16S rRNA gene sequence similarities, respectively. Average nucleotide identity and digital DNA-DNA hybridization values for these type strains were 72.0-75.2% and 21.2-21.9â%, respectively. The major respiratory quinone is menaquinone-7. The major fatty acids were iso-C15â:â0, iso-C17â:â0 3-OH and summed feature 3 (comprising C16â:â1 ω7c and/or C16â:â1 ω6c). The major polar lipids were phosphatidylethanolamine, two unidentified amino acids and four unidentified lipids. The G+C content of genomic DNA was 37.9âmol%. Based on polyphasic taxonomic analysis, it was observed that strain S2-8T is a novel species belonging to the genus Solitalea, for which the name Solitalea lacus sp. nov. is proposed. The type strain is S2-8T (=âKACC 22266T=âJCM 34533T).
Assuntos
Ácidos Graxos , Lagoas , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
BACKGROUND: Many studies have examined the perception of musical emotion using excerpts from familiar music that includes highly expressed emotions to classify emotional choices. However, using familiar music to study musical emotions in people with acquired hearing loss could produce ambiguous results as to whether the emotional perception is due to previous experiences or listening to the current musical stimuli. To overcome this limitation, we developed new musical stimuli to study emotional perception without the effects of episodic memory. METHODS: A musician was instructed to compose five melodies with evenly distributed pitches around 1 kHz. The melodies were created to express the emotions of happy, sad, angry, tender, and neutral. To evaluate whether these melodies expressed the intended emotions, two methods were applied. First, we classified the expressed emotions of melodies with selected musical features from 60 features using genetic algorithm-based k-nearest neighbors. Second, forty-four people with normal hearing participated in an online survey regarding the emotional perception of music based on dimensional and discrete approaches to evaluate the musical stimuli set. RESULTS: Twenty-four selected musical features produced classification for intended emotions with an accuracy of 76%. The results of the online survey in the normal hearing (NH) group showed that the intended emotions were selected significantly more often than the others. K-means clustering analysis revealed that melodies with arousal and valence ratings corresponded to representative quadrants of interest. Additionally, the applicability of the stimuli was tested in 4 individuals with high-frequency hearing loss. CONCLUSION: By applying the individuals with NH, the musical stimuli were shown to classify emotions with high accuracy, as expressed. These results confirm that the set of musical stimuli can be used to study the perceived emotion in music, demonstrating the validity of the musical stimuli, independent of innate musical bias such as due to episodic memory. Furthermore, musical stimuli could be helpful for further studying perceived musical emotion in people with hearing loss because of the controlled pitch for each emotion.
Assuntos
Perda Auditiva , Música , Humanos , Música/psicologia , Percepção Auditiva , Emoções , IraRESUMO
BACKGROUND: The 2020 consensus guidelines for vancomycin therapeutic monitoring recommend using Bayesian estimation targeting the ratio of the area under the curve over 24 hours to minimum inhibitory concentration as an optimal approach to individualize therapy in pediatric patients. To support institutional guideline implementation in children, the objective of this study was to comprehensively assess and compare published population-based pharmacokinetic (PK) vancomycin models and available Bayesian estimation tools, specific to neonatal and pediatric patients. METHODS: PubMed and Embase databases were searched from January 1994 to December 2020 for studies in which a vancomycin population PK model was developed to determine clearance and volume of distribution in neonatal and pediatric populations. Available Bayesian software programs were identified and assessed from published articles, software program websites, and direct communication with the software company. In the present review, 14 neonatal and 20 pediatric models were included. Six programs (Adult and Pediatric Kinetics, BestDose, DoseMeRx, InsightRx, MwPharm++, and PrecisePK) were evaluated. RESULTS: Among neonatal models, Frymoyer et al and Capparelli et al used the largest PK samples to generate their models, which were externally validated. Among the pediatric models, Le et al used the largest sample size, with multiple external validations. Of the Bayesian programs, DoseMeRx, InsightRx, and PrecisePK used clinically validated neonatal and pediatric models. CONCLUSIONS: To optimize vancomycin use in neonatal and pediatric patients, clinicians should focus on selecting a model that best fits their patient population and use Bayesian estimation tools for therapeutic area under the -curve-targeted dosing and monitoring.
Assuntos
Software , Vancomicina , Adulto , Antibacterianos/farmacocinética , Área Sob a Curva , Teorema de Bayes , Criança , Humanos , Recém-Nascido , Cinética , Testes de Sensibilidade Microbiana , Vancomicina/farmacocinéticaRESUMO
BACKGROUND: Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE: We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS: Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS: Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS: Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.
Assuntos
Plasticidade Celular/imunologia , Enzima Desubiquitinante CYLD/imunologia , Helmintíase/imunologia , Helmintos/imunologia , Imunidade/imunologia , Linfócitos T Reguladores/imunologia , Animais , Inflamação/imunologia , Interleucina-4/imunologia , MAP Quinase Quinase Quinases/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Nippostrongylus/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Regulação para Cima/imunologiaRESUMO
BACKGROUND: Endoplasmic reticulum (ER) stress is a common feature of Parkinson's disease (PD), and several PD-related genes are responsible for ER dysfunction. Recent studies suggested LRRK2-G2019S, a pathogenic mutation in the PD-associated gene LRRK2, cause ER dysfunction, and could thereby contribute to the development of PD. It remains unclear, however, how mutant LRRK2 influence ER stress to control cellular outcome. In this study, we identified the mechanism by which LRRK2-G2019S accelerates ER stress and cell death in astrocytes. METHODS: To investigate changes in ER stress response genes, we treated LRRK2-wild type and LRRK2-G2019S astrocytes with tunicamycin, an ER stress-inducing agent, and performed gene expression profiling with microarrays. The XBP1 SUMOylation and PIAS1 ubiquitination were performed using immunoprecipitation assay. The effect of astrocyte to neuronal survival were assessed by astrocytes-neuron coculture and slice culture systems. To provide in vivo proof-of-concept of our approach, we measured ER stress response in mouse brain. RESULTS: Microarray gene expression profiling revealed that LRRK2-G2019S decreased signaling through XBP1, a key transcription factor of the ER stress response, while increasing the apoptotic ER stress response typified by PERK signaling. In LRRK2-G2019S astrocytes, the transcriptional activity of XBP1 was decreased by PIAS1-mediated SUMOylation. Intriguingly, LRRK2-GS stabilized PIAS1 by increasing the level of small heterodimer partner (SHP), a negative regulator of PIAS1 degradation, thereby promoting XBP1 SUMOylation. When SHP was depleted, XBP1 SUMOylation and cell death were reduced. In addition, we identified agents that can disrupt SHP-mediated XBP1 SUMOylation and may therefore have therapeutic activity in PD caused by the LRRK2-G2019S mutation. CONCLUSION: Our findings reveal a novel regulatory mechanism involving XBP1 in LRRK2-G2019S mutant astrocytes, and highlight the importance of the SHP/PIAS1/XBP1 axis in PD models. These findings provide important insight into the basis of the correlation between mutant LRRK2 and pathophysiological ER stress in PD, and suggest a plausible model that explains this connection.
Assuntos
Astrócitos/metabolismo , Estresse do Retículo Endoplasmático/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína 1 de Ligação a X-Box/genética , Animais , Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Mutação , Doença de Parkinson/fisiopatologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Sumoilação , Proteína 1 de Ligação a X-Box/metabolismoRESUMO
Delivering biomolecules, such as antibodies, proteins, and peptides, to the cytosol is an important and challenging aspect of drug development and chemical biology. Polyarginine-a well-known cell-penetrating peptide (CPP)-is capable of exploiting its positive charge and guanidium groups to carry a fused cargo into the cytosol. However, the precise mechanism by which this occurs remains ambiguous. In the present study, we established a new method of quantitatively assessing cell penetration. The method involves inducing cell death by using a polyarginine (R8) to deliver a peptide-ie, mitochondrial targeting domain (MTD)-to the cytosol. We found that 4,4'-diisothiocyanatostilbene-2,2'-di-sulfonate (DIDS)-an anion channel blocker-inhibited the ability of octa-arginine (R8)-fused MTD to penetrate cells. Other anion channel blockers did not inhibit the penetration of peptides fused with R8. Comparison of DIDS with other structurally similar chemicals revealed that the isothiocyanate group of DIDS may be primarily responsible for the inhibitory effect than its stilbene di-sulfonate backbone. These results imply that the inhibitory effect of DIDS may not be derived from the interaction between stilbene di-sulfonate and the anion channels, but from the interaction between the isothiocyanate groups and the cell membrane. Our new MTD method enables the quantitative assessment of cell penetration. Moreover, further studies on the inhibition of CPPs by DIDS may help clarify the mechanism by which penetration occurs and facilitate the design of new penetrative biomolecules.
Assuntos
Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Oligopeptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Interações Medicamentosas , Células HeLa , Humanos , Camundongos , Domínios ProteicosRESUMO
Noxa is a weak apoptosis activator consisting of a BH3 domain and a mitochondrial-targeting domain (MTD). BH3 binds Mcl-1 and Bcl2A1 and inactivates their anti-apoptotic activities, while MTD delivers BH3 to mitochondria. Previously we revealed that MTD may also function as an inducer of necrosis via conjugation with octa-arginine, which induces cytosolic Ca2+ influx from mitochondria. However, the mechanism(s) underlying this process has not been elucidated yet. Here, we show that calcium influx induced by an MTD peptide fused with octa-arginine residue (R8:MTD) originates not only from mitochondria but also from the extracellular space. However, calcium spikes were not sufficient for necrosis. R8:MTD induced mitochondrial permeability transition pore opening, fragmentation, and swelling. These mitochondrial events induced by MTD appeared to be necessary for necrosis induction, since DIDS, a VDAC inhibitor, inhibited the mitochondrial swelling and cell death induced by MTD. We show that R8:MTD disrupted endoplasmic reticulum (ER) structures but not peroxisomes or Golgi, indicating that R8:MTD causes necrosis by inducing ER events as well.
Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/química , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Peptídeos/química , Domínios Proteicos , Canais de Ânion Dependentes de Voltagem/antagonistas & inibidores , Canais de Ânion Dependentes de Voltagem/metabolismoRESUMO
The mitochondrial targeting domain (MTD) of Noxa has necrosis-inducing activity when conjugated with cell-penetrating peptide (CPP). In this study, we report another MTD-like motif, B1MLM, found in BNIP1, a pro-apoptotic BH3-only protein found in the endoplasmic reticulum membrane. The B1MLM peptide, conjugated with CPP, induced necrosis in a way similar to that of R8:MTD. R8:B1MLM caused an intracellular calcium spike, mitochondrial reactive oxygen species generation, and mitochondrial fragmentation. The cytosolic calcium spike was likely due to the opening of the mitochondrial permeability transition pore.
Assuntos
Sinalização do Cálcio , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
The resistance of tumor cells to apoptosis-inducing anticancer agents is regarded as a major impediment for the treatment of cancer patients. This study aimed to examine the possibility whether a necrosis-inducing peptide containing the mitochondria-targeting domain (MTD) of NOXA kills tumor cells that are resistant to apoptosis-inducing anticancer agents. To examine this possibility, we established doxorubicin-resistant (Dox-Res) cells by treating CT26 cells with increasing amounts of doxorubicin. The apoptosis resistance of the Dox-Res CT26 cells was confirmed by measuring the cell viability and activation of caspases. We showed that the MTD-containing peptide fused to eight arginine residues (R8:MTD), a necrosis-inducing peptide, induced necrosis in the Dox-Res CT26 cells, together with a cytosolic calcium spike, reactive oxygen species production, and the release of high mobility group box 1 into the media. Moreover, we demonstrated the killing effect of R8:MTD in tumor tissues generated using the Dox-Res CT26 cells in a mouse model. Therefore, our results suggest that MTD-containing peptides may provide an alternative tool for the elimination of relapsed tumor cells that are not responsive to apoptosis-inducing anticancer agents.
Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Camundongos Endogâmicos BALB C , Necrose , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Espécies Reativas de Oxigênio/metabolismoRESUMO
A Gram-stain-positive strain, designated DT7-02T, was isolated from the surface-sterilized root of Oenotherabiennis (evening primrose) and subjected to taxonomic characterization. Cells of DT7-02T were slender rod-shaped, motile by means of flagella, and oxidase- and catalase-positive. The colonies were circular, pinkish-yellow, opaque, glistering and 1-2 mm in diameter. The strain was moderately thermophilic and halophilic, as growth occurred at 20-44 °C (optimum 40 °C), pH 7-10 (optimum pH 8-9) and in the presence of 0-8â% of NaCl (optimum 4â%) in tryptic soy broth. The analysis of 16S rRNA gene sequences indicated that the strain represented a member of the genus Pseudogracilibacillus of the family Bacillaceae, and the sequence similarity was 96.5â% with Pseudogracilibacillus auburnensis P-207T and 95.9â% with Pseudogracilibacillus marinus NIOT-bflm-S4T. Other related taxa were Ornithinibacillus contaminans DSM 22953T and Sinibacillus soli KCTC 33117T, with 16S rRNA gene sequence similarities of 95.4 and 94.3â%, respectively. The major cellular fatty acids of DT7-02T were anteiso-C15â:â0, anteiso-C17â:â0 and iso-C16â:â0. The DNA G+C content was 35.1 mol%, and the respiratory quinone was MK-7. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The combination of chemotaxonomic properties enabled differentiation of DT7-02T from the other two species of the genus Pseudogracilibacillus. The results of phylogenetic, phenotypic and chemotaxonomic analyses demonstrate that strain DT7-02T (=KCTC 33854T=JCM 31192T) merits recognition as representing a novel species of the genus Pseudogracilibacillus, for which the name Pseudogracilibacillusendophyticus sp. nov. is proposed.
Assuntos
Oenothera biennis/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Bacillaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A Gram-negative, aerobic, motile by flagella, and light yellow bacterium, designated SS1-76T, was isolated from sediment of the Nakdong River in Sangju-si, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate SS1-76T belongs to the genus Uliginosibacterium of the family Rhodocyclaceae, exhibiting high sequence similarity with the type strains of Uliginosibacterium gangwonense 5YN10-9T (96.0%) and Uliginosibacterium paludis KBP-13T (94.9%). Strain SS1-76T contains ubiquinone-8 as a respiratory quinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, and C14:0 as major fatty acids. The cellular polar lipids are composed of phosphatidylethanolamine, phosphatidylglycerol, and unidentified aminophospholipids. The DNA G+C content was 65.3 mol%. Phenotypic, chemotaxonomic, and phylogenetic evidence clearly indicated that strain SS1-76T represents a novel species of the genus Uliginosibacterium, for which the name Uliginosibacterium sangjuense sp. nov. is proposed. The type strain is SS1-76T (= KCTC 52159T = JCM 31375T).
Assuntos
Betaproteobacteria/classificação , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Betaproteobacteria/química , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Metabolômica/métodos , Tipagem Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A novel Gram-stain-negative, non-spore-forming, orange-pigmented bacterium, designated strain SS2-56T, was isolated from sediment of the Nakdong River in Sangju-si, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate SS2-56T belongs to the family Chitinophagaceae, and was most closely related to Lacibacter daechungensis H32-4T (96.6â% similarity) and Lacibacter cauensis NJ-8T (96.1â%). Strain SS2-56T contained menaquinone 7 (MK-7) as a respiratory quinone and iso-C15â:â0, iso-C17â:â0 3-OH, iso-C15â:â1 G, summed feature 3 (C16â:â1ω7c and/or C16â:â1ω6c) and C16â:â0 as major fatty acids. The major polar lipids of strain SS2-56T were phosphatidylethanolamine, one unidentified aminophospholipid and four unidentified lipids. The DNA G+C content was 43.8 mol%. Phenotypic, chemotaxonomic and phylogenetic evidence clearly indicates that strain SS2-56T represents a novel species of the genus Lacibacter, for which the name Lacibacter nakdongensis sp. nov. is proposed. The type strain is SS2-56T (=KCTC 52160T=JCM 31372T).
Assuntos
Bacteroidetes/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Rios/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A Gram-staining-negative, non-motile, non-pigmented, strictly aerobic and rod-shape bacterium, designated BK296T, was isolated from stream water originating from a limestone cave in Samcheok, Korea. Optimal growth of strain BK296T was observed at 30 °C, pH 7.0-8.0 and without NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BK296T belonged to the genus Perlucidibaca, forming a robust clade with a member of the genus, and was most closely related to Perlucidibaca piscinae (97.8â%). The average nucleotide identity value between strain BK296T and Perlucidibacapiscinae IMCC1704T was 79.8â%, and the genome-to-genome distance was 17.5â% on mean. The G+C content of the DNA of strain BK296T was 55.7 mol%. The major fatty acids were summed feature 3 (C16â:â1ω7c and/or C16â:â1ω6c), C16â:â0, C12â:â0 3-OH and summed feature 8 (C18â:â1ω7c and/or C18â:â1ω6c). The major isoprenoid quinone was ubiquinone Q-8. On the basis of phenotypic, genotypic and phylogenetic analyses, strain BK296T (=KCTC 52162T=JCM 31377T) represents a novel species of the genus Perlucidibaca, for which the name Perlucidibaca aquatica sp. nov. is proposed.
Assuntos
Água Doce/microbiologia , Moraxellaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cavernas , DNA Bacteriano/genética , Ácidos Graxos/química , Moraxellaceae/genética , Moraxellaceae/isolamento & purificação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
BACKGROUND: Genetic studies and the abundance of alpha-synuclein (α-Syn) in presynaptic terminals suggest that α-Syn plays a critical role in maintaining synaptic vesicle pools. However, there are still few experimental tools for elucidating its physiological roles. METHODS: Unexpectedly, we detected various cellular distribution patterns of endogenous α-Syn by immunofluorescence assays (IFAs). To provide new molecular insights into α-Syn research, we identified associations between epitopes, conformations, and subcellular localization of α-Syn and categorized them. RESULTS: The α-Syn exposing Y125 was found to coexist with F-actin at the edge of the cells, including the plasma membrane. α-Syn conformations exposing P128 or both F94 and K97 were partly localized to the mitochondria. These results indicate that various conformations of α-Syn are associated with specific subcellular localizations. Intriguingly, we demonstrate for the first time that the phosphorylated α-Syn at Ser129, also known as a Parkinson's disease (PD)-causing form, is targeted to the mitochondria. CONCLUSIONS: Our study showed that different subcellular distribution patterns of α-Syn reflect the existence of various α-Syn conformations under normal conditions. GENERAL SIGNIFICANCE: This study provides novel clues for deciphering the physiological function of α-Syn in connection with subcellular localization. Dissecting the specific α-Syn conformations may lead to useful strategies in PD therapy and diagnosis.
Assuntos
Epitopos/metabolismo , Frações Subcelulares/metabolismo , alfa-Sinucleína/metabolismo , Animais , Camundongos , Conformação ProteicaRESUMO
A novel actinobacterium designated strain MWE-A11T was isolated from the root of wild Artemisia princeps (mugwort). The isolate was aerobic, Gram-stain-positive and short rod-shaped, and the colonies were yellow and circular with entire margin. Strain MWE-A11T grew at 15-37 °C and pH 6.0-8.0. The predominant isoprenoid quinones were MK-11 and MK-10. The predominant fatty acids were anteiso-C15:0 and iso-C16:0, and the DNA G+C content was 68.8âmol%. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The peptidoglycan contained 2,4-diaminobutyric acid as the diagnostic diamino acid, and the acyl type was glycolyl. Phylogenetic analyses based on 16S rRNA gene sequence comparisons indicated that strain MWE-A11T was affiliated with the family Microbacteriaceae, and was most closely related to the type strains of Humibacter antri (96.4% 16S rRNA gene sequence similarity), Herbiconiux moechotypicola (96.3%), Leifsonia soli (96.3%), Leifsonia lichenia (96.2%), Leifsonia xyli subsp. cynodontis (96.1%), Microbacterium testaceum (96.0%) and Humibacter albus (96.0%). However, the combination of chemotaxonomic properties clearly distinguished strain MWE-A11T from the related taxa at genus level. Accordingly, Allohumibacter endophyticus gen. nov., sp. nov. is proposed to accommodate a new member of the family Microbacteriaceae. The type strain of the type species is MWE-A11T (=JCM 19371T=KCTC 29232T).
Assuntos
Actinomycetales/classificação , Artemisia/microbiologia , Filogenia , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Dados de Sequência Molecular , Peptidoglicano/química , Fosfolipídeos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
A Gram-stain-negative, non-spore-forming and coccus-shaped bacterial strain, designated 4DR5T, was isolated from freshwater and its taxonomic position was investigated using a polyphasic approach. Growth occurred at 10-40 °C (optimum 30 °C), at pH 6-9 (optimum pH 7) and in the presence of 0-0.4 % (w/v) NaCl (optimum 0 %) on R2A agar. On the basis of 16S rRNA gene sequence similarity, strain 4DR5T was assigned to the family Moraxellaceae of the class Gammaproteobacteria, and its closest related taxa were species of the genera Perlucidibaca (93.67 % sequence similarity), Agitococcus (93.07 %), Paraperlucidibaca (92.31-92.38 %), Alkanindiges (91.79 %) and Acinetobacter (90.24-91.23 %). The predominant isoprenoid quinone detected in strain 4DR5T was Q-10. The major cellular fatty acids were a summed feature consisting of C16 : 1ω7c and/or C16 : 1ω6c, one consisting of C18 : 1ω7c and/or C18 : 1ω6c, and C16 : 0. The major polar lipid was phosphatidylethanolamine. The genomic DNA G+C content of the strain was 61.2âmol%. The phylogenetic, chemotaxonomic and biochemical data not only supported the affiliation of strain 4DR5T to the family Moraxellaceae, but also separated it from other established genera within the family. Therefore, the novel isolate evidently represents a novel species of a new genus of Moraxellaceae, for which the name Fluviicoccus keumensis gen. nov., sp. nov. is proposed. The type strain of Fluviicoccus keumensis is 4DR5T ( = KCTC 32475T = JCM 19370T).
Assuntos
Água Doce/microbiologia , Moraxellaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Moraxellaceae/genética , Moraxellaceae/isolamento & purificação , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/químicaRESUMO
A Gram-stain-negative, motile by gliding, non-spore-forming and oval-shaped bacterial strain designated T1-10T was isolated from pine forest soil, and its taxonomic position was investigated using a polyphasic approach. Growth occurred at 10-37 °C (optimum, 30 °C), at pH 6-7 and in the presence of 0-1 % (w/v) (optimum, 0 %) NaCl. Flexirubin-type pigments were produced. On the basis of 16S rRNA gene sequence similarity, strain T1-10T was assigned to the genus Taibaiella of the phylum Bacteroidetes, and the most closely related species was Taibaiella koreensis THG-DT86T with 97.11 % sequence similarity, but the strain formed an independent lineage in the phylogenetic tree. The genomic DNA G+C content of strain T1-10T was 42.5 mol%. The main cellular fatty acids were iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH. The only isoprenoid quinone detected in the strain was MK-7, and the major polyamine was homospermidine. The major polar lipids were phosphatidylethanolamine and unidentified aminophospholipids. Strain T1-10T could be distinguished from related species by physiological and biochemical properties. Phenotypic and phylogenetic data supported that strain T1-10T represents a novel species of the genus Taibaiella, for which the name Taibaiella soli sp. nov. is proposed (type strain T1-10T=KCTC 42277T=JCM 31014T).
Assuntos
Bacteroidetes/classificação , Florestas , Filogenia , Pinus/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfatidiletanolaminas , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Espermidina/química , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
A Gram-stain-negative, motile by gliding, yellow-pigmented bacterial strain, designated KNUS1T, was isolated from Lake Paro in Korea. The phylogenetic tree based on 16S rRNA gene sequences showed that strain KNUS1T formed a distinct lineage within the genus Flavobacterium. Strain KNUS1T was closely related to Flavobacterium cheonhonense ARSA-15T (96.8 %16S rRNA gene sequence similarity), Flavobacterium pectinovorum DSM 6368T (96.3 %) and Flavobacterium dankookense ARSA-19T (96.1 %). The major fatty acids of strain KNUS1T were iso-C15 : 0 and iso-C15 : 1 G. The major polyamine was sym-homospermidine. The major polar lipids of strain KNUS1T were phosphatidylethanolamine, five unidentified aminolipids and three unidentified polar lipids. The major respiratory'quinone was menaquinone 6 (MK-6). The DNA G+C content of strain KNUS1T was 34.2âmol%. On the basis of the evidence presented in this study, strain KNUS1T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium paronense sp. nov. is proposed. The type strain is KNUS1T ( = KACC 17692T = CECT 8460T).
Assuntos
Flavobacterium/classificação , Água Doce/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Ilhas , Dados de Sequência Molecular , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
Porcine circovirus type 2 (PCV2) is the main aetiological agent of postweaning multisystemic wasting syndrome. The mechanism of pathogenicity associated with PCV2 infection is still not fully understood. Nevertheless, the fact that large amounts of proinflammatory cytokines within lymphoid tissues are released during the early stage of PCV2 infection may induce chronic inflammatory responses followed by the destruction of lymphoid tissues. However, how PCV2 infection causes an excessive inflammatory response in the host immune system during the early stage of PCV2 infection has still not been elucidated. In this study, we show that direct interaction between the PCV2 ORF3 and regulator of G protein signalling 16 (RGS16) within the cytoplasm of host cells leads to ubiquitin-mediated proteasomal degradation of RGS16. Facilitated degradation of the RGS16 by PCV2 ORF3 further enhances NFκB translocation into the nucleus through the ERK1/2 signalling pathway and increased IL-6 and IL-8 mRNA transcripts. Consequently, more severe inflammatory responses and leukocyte infiltration occur around host cells. This evidence may be the first clue explaining the molecular basis of how excessive amounts of proinflammatory cytokines within lymphoid tissues are released during the early stage of PCV2 infection.