Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 592(7853): 225-231, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828319

RESUMO

Microporous polymers feature shape-persistent free volume elements (FVEs), which are permeated by small molecules and ions when used as membranes for chemical separations, water purification, fuel cells and batteries1-3. Identifying FVEs that have analyte specificity remains a challenge, owing to difficulties in generating polymers with sufficient diversity to enable screening of their properties. Here we describe a diversity-oriented synthetic strategy for microporous polymer membranes to identify candidates featuring FVEs that serve as solvation cages for lithium ions (Li+). This strategy includes diversification of bis(catechol) monomers by Mannich reactions to introduce Li+-coordinating functionality within FVEs, topology-enforcing polymerizations for networking FVEs into different pore architectures, and several on-polymer reactions for diversifying pore geometries and dielectric properties. The most promising candidate membranes featuring ion solvation cages exhibited both higher ionic conductivity and higher cation transference number than control membranes, in which FVEs were aspecific, indicating that conventional bounds for membrane permeability and selectivity for ion transport can be overcome4. These advantages are associated with enhanced Li+ partitioning from the electrolyte when cages are present, higher diffusion barriers for anions within pores, and network-enforced restrictions on Li+ coordination number compared to the bulk electrolyte, which reduces the effective mass of the working ion. Such membranes show promise as anode-stabilizing interlayers in high-voltage lithium metal batteries.

2.
J Am Chem Soc ; 146(19): 12984-12999, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709897

RESUMO

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 µs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.

3.
Phys Chem Chem Phys ; 24(2): 674-686, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908060

RESUMO

Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.

4.
Angew Chem Int Ed Engl ; 60(23): 12999-13006, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33783105

RESUMO

Despite being an effective flame retardant, trimethyl phosphate (TMPa ) is generally considered as an unqualified solvent for fabricating electrolytes used in graphite (Gr)-based lithium-ion batteries as it readily leads to Gr exfoliation and cell failure. In this work, by adopting the unique solvation structure of localized high-concentration electrolyte (LHCE) to TMPa and tuning the composition of the solvation sheaths via electrolyte additives, excellent electrochemical performance can be achieved with TMPa -based electrolytes in Gr∥LiNi0.8 Mn0.1 Co0.1 O2 cells. After 500 charge/discharge cycles within the voltage range of 2.5-4.4 V, the batteries containing the TMPa -based LHCE with a proper additive can achieve a capacity retention of 85.4 %, being significantly higher than cells using a LiPF6 -organocarbonates baseline electrolyte (75.2 %). Meanwhile, due to the flame retarding effect of TMPa , TMPa -based LHCEs exhibit significantly reduced flammability compared with the conventional LiPF6 -organocarbonates electrolyte.

5.
Angew Chem Int Ed Engl ; 60(15): 8258-8267, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480154

RESUMO

Manganese-rich layered oxide materials hold great potential as low-cost and high-capacity cathodes for Na-ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn-rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn-rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g-1 . It delivers ca. 160 mAh g-1 specific capacity between 2-3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre-formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de-sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3-P3 phase transition.

6.
Chemistry ; 26(55): 12544-12548, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428326

RESUMO

Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal-organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni-MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2 . Further 129 Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.

7.
Phys Chem Chem Phys ; 22(34): 19009-19021, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32808606

RESUMO

Water-lean CO2 capture solvents show promise for more efficient and cost-effective CO2 capture, although their long-term behavior in operation has yet to be well studied. New observations of extended structure solvent behavior show that some solvent formulations transform into a glass-like phase upon aging at operating temperatures after contact with CO2. The glassification of a solvent would be detrimental to a carbon-capture process due to plugging of infrastructure, introducing a critical need to decipher the underlying principles of this phenomenon to prevent it from happening. We present the first integrated theoretical and experimental study to characterize the nano-structure of metastable and glassy states of an archetypal single-component alkanolguanidine carbon-capture solvent and assess how minute changes in atomic-level interactions convert the solvent between metastable and glass-like states. Small-angle neutron scattering and neutron diffraction coupled with small- and wide-angle X-ray scattering analysis demonstrate that minute structural changes in solution precipitae reversible aggregation of zwitterionic alkylcarbonate clusters in solution. Our findings indicate that our test system, an alkanolguanidine, exhibits a first-order phase transition, similar to a glass transition, at approximately 40 °C-close to the operating absorption temperature for post-combustion CO2 capture processes. We anticipate that these phenomena are not specific to this system, but are present in other classes of colvents as well. We discuss how molecular-level interactions can have vast implications for solvent-based carbon-capture technologies, concluding that fortunately in this case, glassification of water-lean solvents can be avoided as long as the solvent is run above its glass transition temperature.

8.
Inorg Chem ; 58(13): 8339-8346, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067043

RESUMO

One approach to reduce increasing concentrations of toxic per- and polyfluoroalkyl substances (PFAS) involves the capture of PFAS from aqueous media using porous materials. The use of highly porous, tunable metal organic framework (MOF) materials is appealing for targeted liquid phase sorption. In this work, we demonstrate the excellent capture of perfluorooctanesulfonate (PFOS) using both the chromium and iron analogs of the MIL-101 framework. Experimental characterization of PFOS uptake reveals unique differences in sorption properties between these two analogs, providing key implications for future PFOS sorbent design. Specifically, STEM-EDS and IR spectroscopy show definitive proof of sorption. Furthermore, XPS analysis shows evidence of a strong interaction between sulfur atoms of the polar headgroup of PFOS and the metal center of the framework in addition to the fluorinated nonpolar tail. Additionally, in situ 19F NMR reveals higher PFOS affinity for Cr-MIL-101 versus Fe-MIL-101 based on sorption kinetics. Surprisingly, at these relatively high PFOS concentrations, activated acetylene black carbon is severely outperformed by both MOFs.

9.
Nano Lett ; 17(5): 3061-3067, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28448154

RESUMO

Li-S batteries have been extensively studied using rigid carbon as the host for sulfur encapsulation, but improving the properties with a reduced electrolyte amount remains a significant challenge. This is critical for achieving high energy density. Here, we developed a soft PEO10LiTFSI polymer swellable gel as a nanoscale reservoir to trap the polysulfides under lean electrolyte conditions. The PEO10LiTFSI gel immobilizes the electrolyte and confines polysulfides within the ion conducting phase. The Li-S cell with a much lower electrolyte to sulfur ratio (E/S) of 4 gE/gS (3.3 mLE/gS) could deliver a capacity of 1200 mA h/g, 4.6 mA h/cm2, and good cycle life. The accumulation of polysulfide reduction products, such as Li2S, on the cathode, is identified as the potential mechanism for capacity fading under lean electrolyte conditions.

10.
Phys Chem Chem Phys ; 17(20): 13307-14, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25920549

RESUMO

A novel [Mg2(µ-Cl)2](2+) cation complex, which is highly active for reversible Mg electrodeposition, was identified for the first time in this work. This complex was found to be present in electrolytes formulated in dimethoxyethane (DME) through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI = bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The molecular structure of the cation complex was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR. The electrolyte synthesis process was studied and rational approaches for formulating highly active electrolytes were proposed. Through control of the anions, electrolytes with an efficiency close to 100%, a wide electrochemical window (up to 3.5 V) and a high ionic conductivity (>6 mS cm(-1)) were obtained. The understanding of electrolyte synthesis in DME developed in this work could bring significant opportunities for the rational formulation of electrolytes of the general formula [Mg2(µ-Cl)2][anion]x for practical Mg batteries.

11.
J Chem Phys ; 142(22): 224502, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071715

RESUMO

A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm(-1) have minimal effects on the solvation structure of the smaller alkali cations (Li(+) and Na(+)) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K(+), Rb(+), and Cs(+)) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

12.
J Chem Phys ; 141(10): 104509, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25217939

RESUMO

Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self-diffusion coefficients (D) of solutes and solvents were measured by (1)H and (19)F pulsed field gradient nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC), and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0-50 °C and for various concentrations (0.25-1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in all solvents. Since TFSI(-) has fluoromethyl groups (CF3), D(TFSI) could be measured separately and the values found are larger than those for D(Fc1N112) in all samples measured. The EC, PC, and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC, and EMC. A difference in D (D(PC) < D(EC) < D(EMC)), and both a higher E(a) for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112(+), which is a relatively stronger interaction than that between Fc1N112(+) and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that D(PC) = D(EC) = D(EMC) and Fc1N112(+) and all components of the EC/PC/EMC solution have the same E(a) for translational motion, while the ratio D(EC/PC/EMC)/D(Fc1N112) is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112(+) transference numbers lie around 0.4 and increase slightly as the temperature is increased in the PC and EMC solvents. The trends observed for D from simulations are in good agreement with experimental results and provide molecular level understanding of the solvation structure of Fc1N112-TFSI dissolved in EC/PC/EMC.

13.
Adv Mater ; 36(35): e2406594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38940263

RESUMO

Sulfurized polyacrylonitrile (SPAN) recently emerges as a promising cathode for high-energy lithium (Li) metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. Besides, the large volume changes of Li metal anode and SPAN cathode require inorganic-rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design where lightweight dibutyl ether (DBE) is used as a diluent for concentrated lithium bis(fluorosulfonyl)imide (LiFSI)-triethyl phosphate (TEP) solution. The designed electrolyte (d = 1.04 g mL-1) is 40%-50% lighter than conventional localized high-concentration electrolytes (LHCEs), leading to 12%-20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent-diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion-derived inorganic-rich interphases, minimize electrolyte consumption, and improve cell cyclability. The electrolyte also exhibits low volatility and offers good protection to both Li metal anode and SPAN cathode under thermal abuse.

14.
Langmuir ; 29(31): 9744-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23845079

RESUMO

The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.


Assuntos
Carbono/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Dióxido de Silício/química , Temperatura , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
15.
Macromol Rapid Commun ; 34(5): 452-9, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23450623

RESUMO

A porous, nitrogen-doped carbonaceous free-standing membrane (TFMT-550) is prepared by a facile template-free method using letrozole as an intermediate to a triazole-functionalized-triazine framework, followed by carbonization. Such adsorption/diffusion membranes exhibit good separation performance of CO2 over N2 and surpassing the most recent Robeson upper bound. An exceptional ideal CO2 /N2 permselectivity of 47.5 was achieved with a good CO2 permeability of 2.40 × 10(-13) mol m m(-2) s(-1) Pa(-1) . The latter results arise from the presence of micropores, narrow distribution of small mesopores and from the strong dipole-quadrupole interactions between the large quadrupole moment of CO2 molecules and the polar sites associated with N groups (e.g., triazine units) within the framework.

16.
J Phys Chem Lett ; 14(50): 11393-11399, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38079154

RESUMO

Aqueous electrolytes composed of 0.1 M zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2) and acetonitrile (ACN) were studied using combined experimental and simulation techniques. The electrolyte was found to be electrochemically stable when the ACN V% is higher than 74.4. In addition, it was found that the ionic conductivity of the mixed solvent electrolytes changes as a function of ACN composition, and a maximum was observed at 91.7 V% of ACN although the salt concentration is the same. This behavior was qualitatively reproduced by molecular dynamics (MD) simulations. Detailed analyses based on experiments and MD simulations show that at high ACN composition the water network existing in the high water composition solutions breaks. As a result, the screening effect of the solvent weakens and the correlation among ions increases, which causes a decrease in ionic conductivity at high ACN V%. This study provides a fundamental understanding of this complex mixed solvent electrolyte system.

17.
Nat Commun ; 14(1): 868, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797246

RESUMO

The electrochemical instability of ether-based electrolyte solutions hinders their practical applications in high-voltage Li metal batteries. To circumvent this issue, here, we propose a dilution strategy to lose the Li+/solvent interaction and use the dilute non-aqueous electrolyte solution in high-voltage lithium metal batteries. We demonstrate that in a non-polar dipropyl ether (DPE)-based electrolyte solution with lithium bis(fluorosulfonyl) imide salt, the decomposition order of solvated species can be adjusted to promote the Li+/salt-derived anion clusters decomposition over free ether solvent molecules. This selective mechanism favors the formation of a robust cathode electrolyte interphase (CEI) and a solvent-deficient electric double-layer structure at the positive electrode interface. When the DPE-based electrolyte is tested in combination with a Li metal negative electrode (50 µm thick) and a LiNi0.8Co0.1Mn0.1O2-based positive electrode (3.3 mAh/cm2) in pouch cell configuration at 25 °C, a specific discharge capacity retention of about 74% after 150 cycles (0.33 and 1 mA/cm2 charge and discharge, respectively) is obtained.

18.
Angew Chem Int Ed Engl ; 51(16): 3842-5, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22411696

RESUMO

The chemical conversion of methanol in direct methanol fuel cells was followed in situ by NMR spectroscopy. Comparing data of the methanol oxidation on Pt and PtRu anode catalysts allowed the role of Ru in both Faradaic and non-Faradaic reactions to be investigated. The spatial distributions of chemicals could also be determined. (Picture: T1-T4=inlet and outlet tubes.).

19.
J Phys Chem B ; 126(16): 3135-3142, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420819

RESUMO

Microsized pore parameters, such as pore size and distance between pores in a series of model EPDM rubbers, were determined in situ under the pressure of 500 psi using 129Xe nuclear magnetic resonance (NMR) techniques: spin-lattice (T1) and spin-spin (T2) relaxation measurements, pulsed-field gradient (PFG) NMR, and two-dimensional exchange spectroscopy (2D EXSY). The T1/T2 (≫1) ratio for the xenon confined in the pores is larger than that for nonconfined free xenon. This suggests that almost the entire pore surface interacts with xenon atoms like a closed pore. While these pores still connect each other through very narrow diffusion/exchange channels, it is possible to observe the echo decay in PFG-NMR and cross-peaks in 2D EXSY. The results show that both diffusion (Dpore ≈ 2.1 × 10-10 m2/s) and exchange (exchange rate, τexch = a few tens of milliseconds) of xenon between a pore within the material and outer surface are prolonged. The exchange distances (l), which correspond to the xenon gas penetration depth, were estimated to be 70-100 µm based on the measured diffusion coefficients and exchange rate (1/τexch). NMR diffraction analysis reveals that pore size (a) and pore distance (b) are on the order of magnitude of micrometers and tens of micrometers, while the diffusion coefficients of xenon gas in the diffusion channels (Deff) are about 10-8 m2/s. Overall, this study suggests that the pores with a few micrometers connected through very narrow flowing channels with the length of several tens of micrometers are developed 70 to 100 µm below the rubber surface. Furthermore, the overall steady-state diffusion of xenon is slower, approximately 2 orders of magnitudes, than the diffusion in the channel between the pores. The pore and exchange distances correlated with the composition of rubbers showed that the properties of EPDM rubber as a high-pressure gas barrier could be improved by reducing the size of cracks and the depth of gas penetration by the addition of both carbon black and silica fillers.

20.
Nat Comput Sci ; 2(2): 112-122, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177518

RESUMO

Identifying stable speciation in multi-component liquid solutions is fundamentally important to areas from electrochemistry to organic chemistry and biomolecular systems. Here we introduce a fully automated, high-throughput computational framework for the accurate prediction of stable species in liquid solutions by computing the nuclear magnetic resonance (NMR) chemical shifts. The framework automatically extracts and categorizes hundreds of thousands of atomic clusters from classical molecular dynamics simulations, identifies the most stable species in solution and calculates their NMR chemical shifts via density functional theory calculations. Additionally, the framework creates a database of computed chemical shifts for liquid solutions across a wide chemical and parameter space. We compare our computational results to experimental measurements for magnesium bis(trifluoromethanesulfonyl)imide Mg(TFSI)2 salt in dimethoxyethane solvent. Our analysis of the Mg2+ solvation structural evolutions reveals key factors that influence the accuracy of NMR chemical shift predictions in liquid solutions. Furthermore, we show how the framework reduces the performance of over 300 13C and 600 1H density functional theory chemical shift predictions to a single submission procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA