Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(7): 2422-2439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725842

RESUMO

Background & Aims: Reactive oxygen species (ROS) act as modulators triggering cellular dysfunctions and organ damage including liver fibrosis in which hepatic stellate cell (HSC) activation plays a key role. Previous studies suggest that microRNA-144 (miR-144) acts as a pro-oxidant molecule; however, whether and how miR-144 affects HSC activation and liver fibrosis remain unknown. Methods: Carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced experimental liver fibrosis models were used. Hepatic miR-144 expression was analyzed by miRNA in situ hybridization with RNAscope probe. The in vivo effects of silencing or overexpressing miR-144 were examined with an adeno-associated virus 6 (AAV6) carrying miR-144 inhibitor or mimics in fibrotic mouse experimental models. Results: In this study, we demonstrated that ROS treatment significantly upregulated miR-144 in HSCs, which further promoted HSC activation in vitro. Interestingly, miR-144 was preferentially elevated in HSCs of experimental liver fibrosis in mice and in human liver fibrotic tissues. Furthermore, in vivo loss or gain-of-function experiments via AAV6 carrying miR-144 antagomir or agomir revealed that blockade of miR-144 in HSCs mitigated, while overexpression of miR-144 in HSCs accelerated the development of experimental liver fibrosis. Mechanistically, SIN3 transcription regulator family member A (SIN3A), a transcriptional repressor, was identified to be the target of miR-144 in HSCs. MiR-144 downregulated Sin3A, and in line with this result, specific knockdown of Sin3a in HSCs remarkedly activated p38 MAPK signaling pathway to promote HSC activation, eventually exacerbating liver fibrosis. Conclusions: Oxidative stress-driven miR-144 fuels HSC activation and liver fibrogenesis by limiting the SIN3A-p38 axis. Thus, a specific inhibition of miR-144 in HSCs could be a novel therapeutic strategy for the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Estresse Oxidativo , Complexo Correpressor Histona Desacetilase e Sin3 , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
2.
Pharmacol Ther ; 243: 108353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738973

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Despite extensive research and multiple clinical trials, there are still no FDA-approved therapies to treat the most severe forms of NAFLD. This is largely due to its complicated etiology and pathogenesis, which involves visceral obesity, insulin resistance, gut dysbiosis, etc. Although inflammation is generally believed to be one of the critical factors that drive the progression of simple steatosis to nonalcoholic steatohepatitis (NASH), the exact type of inflammation and how it contributes to NASH pathogenesis remain largely unknown. Liver inflammation is accompanied by the elevation of inflammatory mediators, including cytokines and chemokines and consequently intrahepatic infiltration of multiple types of immune cells. Recent studies revealed that extracellular vesicles (EVs) derived from inflammatory cells and hepatocytes play an important role in controlling liver inflammation during NASH. In this review, we highlight the roles of innate and adaptive immune cells and their microRNA-enriched EVs during NAFLD development and discuss potential drugs that target inflammatory pathways for the treatment of NAFLD.


Assuntos
Vesículas Extracelulares , Resistência à Insulina , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , MicroRNAs/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Fígado/metabolismo
3.
ACS Appl Mater Interfaces ; 13(46): 55263-55271, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34756011

RESUMO

The exploration for low-cost bifunctional materials for highly efficient overall water splitting has drawn profound research attention. Here, we present a facile preparation of Mo-P dual-doped Co/oxygen-deficient Co3O4 core-shell nanorods as a highly efficient electrocatalyst. In this strategy, oxygen vacancies are first generated in Co3O4 nanorods by lithium reduction at room temperature, which endows the materials with bifunctional characteristics of the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). A Co layer doped with Mo and P is further deposited on the surface of the Co3O4-x nanorods to enhance the electrocatalytic hydrolysis performance. As a result, the overpotentials of HER and OER are only 281 and 418 mV at a high current density of 100 mA cm-2 in 1.0 M KOH, respectively. An overall water electrolytic cell using CoMoP@Co3O4-x nanorods as both electrodes can reach 10 mA cm-2 at 1.614 V with outstanding durability. The improvement is realized by the synergistic effect of oxygen vacancies, Mo/P doping, and core-shell heterostructures for modulating the electronic structure and producing more active sites, which suggests a promising method for developing cost-effective and stable electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA