Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 609(7927): 502-506, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104553

RESUMO

Hund's multiplicity rule states that a higher spin state has a lower energy for a given electronic configuration1. Rephrasing this rule for molecular excited states predicts a positive energy gap between spin-singlet and spin-triplet excited states, as has been consistent with numerous experimental observations over almost a century. Here we report a fluorescent molecule that disobeys Hund's rule and has a negative singlet-triplet energy gap of -11 ± 2 meV. The energy inversion of the singlet and triplet excited states results in delayed fluorescence with short time constants of 0.2 µs, which anomalously decrease with decreasing temperature owing to the emissive singlet character of the lowest-energy excited state. Organic light-emitting diodes (OLEDs) using this molecule exhibited a fast transient electroluminescence decay with a peak external quantum efficiency of 17%, demonstrating its potential implications for optoelectronic devices, including displays, lighting and lasers.

2.
Annu Rev Phys Chem ; 74: 287-311, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36719976

RESUMO

Predicting the whole process of a chemical reaction while solving kinetic equations presents an opportunity to realize an on-the-fly kinetic simulation that directly discovers chemical reactions with their product yields. Such a simulation avoids the combinatorial explosion of reaction patterns to be examined by narrowing the search space based on the kinetic analysis of the reaction path network, and would open a new paradigm beyond the conventional two-step approach, which requires a reaction path network prior to performing a kinetic simulation. The authors addressed this issue and developed a practical method by combining the artificial force induced reaction method with the rate constant matrix contraction method. Two algorithms are available for this purpose: a forward mode with reactants as the input and a backward mode with products as the input. This article first numerically verifies these modes for known reactions and then demonstrates their application to the actual reaction discovery. Finally, the challenges of this method and the prospects for ab initio reaction discovery are discussed.

3.
J Phys Chem A ; 128(14): 2883-2890, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38564273

RESUMO

The yield of a chemical reaction is obtained by solving its rate equation. This study introduces an approach for differentiating yields by utilizing the parameters of the rate equation, which is expressed as a first-order linear differential equation. The yield derivative for a specific pair of reactants and products is derived by mathematically expressing the rate constant matrix contraction method, which is a simple kinetic analysis method. The parameters of the rate equation are the Gibbs energies of the intermediates and transition states in the reaction path network used to formulate the rate equation. Thus, our approach for differentiating the yield allows a numerical evaluation of the contribution of energy variation to the yield for each intermediate and transition state in the reaction path network. In other words, a comparison of these values automatically extracts the factors affecting the yield from a complicated reaction path network consisting of numerous reaction paths and intermediates. This study verifies the behavior of the proposed approach through numerical experiments on the reaction path networks of a model system and the Rh-catalyzed hydroformylation reaction. Moreover, the possibility of using this approach for designing ligands in organometallic catalysts is discussed.

4.
Org Biomol Chem ; 21(15): 3132-3142, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36974985

RESUMO

Ligand screening is a crucial step in the development of transition metal catalysis, as it involves identifying the optimal ligand for a particular reaction from a large pool of candidate molecules. Conventionally, this process is performed through an experimental trial-and-error, which can be time-consuming and resource-intensive in many cases. One of the ideal strategies for streamlining this process is a transition state theory (TST)-based approach, which aims to design optimal catalysts that results in the best energy profile for the desired reaction. However, the implementation of TST-based ligand screening remains challenging mainly due to the large number of potential ligands that need to be individually evaluated through quantum chemical calculations. In this study, we experimentally demonstrated a practical TST-based ligand screening in accordance with our virtual ligand-assisted (VLA) screening strategy. As a case study, the electronic anc steric features of phosphine ligands that maximize chemoselectivity in the Suzuki-Miyaura cross-coupling (SMC) reaction of p-chlorophenyl triflate were determined through quantum chemical calculations using virtual ligands, and several phosphine ligands were suggested to exhibit high chemoselectivity. Based on this suggestion, we successfully found that tri(1-adamantyl)phosphine and tri(neopentyl)phosphine show high to excellent selectivity for the C-Cl bond activation. This case study suggests that the VLA screening strategy could be a useful tool for ligand screening.

5.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298952

RESUMO

Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.


Assuntos
Redes Neurais de Computação , Cinética , Hidrogenação
6.
Angew Chem Int Ed Engl ; 62(1): e202211936, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336664

RESUMO

Systematic reaction path exploration revealed the entire mechanism of Knowles's light-promoted catalytic intramolecular hydroamination. Bond formation/cleavage competes with single electron transfer (SET) between the catalyst and substrate. These processes are described by adiabatic processes through transition states in an electronic state and non-radiative transitions through the seam of crossings (SX) between different electronic states. This study determined the energetically favorable SET path by introducing a practical computational model representing SET as non-adiabatic transitions via SXs between substrate's potential energy surfaces for different charge states adjusted based on the catalyst's redox potential. Calculations showed that the reduction and proton shuttle process proceeded concertedly. Also, the relative importance of SET paths (giving the product and leading back to the reactant) varies depending on the catalyst's redox potential, affecting the yield.

7.
J Am Chem Soc ; 144(50): 22985-23000, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36451276

RESUMO

Pericyclic reactions, which involve cyclic concerted transition states without ionic or radical intermediates, have been extensively studied since their definition in the 1960s, and the famous Woodward-Hoffmann rules predict their stereoselectivity and chemoselectivity. Here, we describe the application of a fully automated reaction-path search method, that is, the artificial force induced reaction (AFIR), to trace an input compound back to reasonable starting materials through thermally allowed pericyclic reactions via product-based quantum-chemistry-aided retrosynthetic analysis (QCaRA) without using any a priori experimental knowledge. All categories of pericyclic reactions, including cycloadditions, ene reactions, group-transfer, cheletropic, electrocyclic, and sigmatropic reactions, were successfully traced back via concerted reaction pathways, and starting materials were computationally obtained with the correct stereochemistry. Furthermore, AFIR was used to predict whether the identified reaction pathway can be expected to occur in good yield relative to other possible reactions of the identified starting material. In order to showcase its practical utility, this state-of-the-art technology was also applied to the retrosynthetic analysis of a natural product with a relatively high number of atoms (52 atoms: endiandric acid C methyl ester), which was first synthesized by Nicolaou in 1982 and provided the corresponding starting polyenes with the correct stereospecificity via three pericyclic reaction cascades (one Diels-Alder reaction as well as 6π and 8π electrocyclic reactions). Moreover, not only systems that obey the Woodward-Hoffmann rules but also systems that violate these rules, such as those recently calculated by Houk, can be retrosynthesized accurately.

8.
Phys Chem Chem Phys ; 24(17): 10305-10310, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437567

RESUMO

Reaction path finding methods construct a graph connecting reactants and products in a quantum chemical energy landscape. They are useful in elucidating various reactions and provide footsteps for designing new reactions. Their enormous computational cost, however, limits their application to relatively simple reactions. This paper engages in accelerating reaction path finding by introducing the principles of algorithmic search. A new method called RRT/SC-AFIR is devised by combining rapidly exploring random tree (RRT) and single component artificial force induced reaction (SC-AFIR). Using 96 cores, our method succeeded in constructing a reaction graph for Fritsch-Buttenberg-Wiechell rearrangement within a time limit of 3 days, while the conventional methods could not. Our results illustrate that the algorithm theory provides refreshing and beneficial viewpoints on quantum chemical methodologies.

9.
Chemistry ; 27(39): 9965-9966, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34132425

RESUMO

Invited for the cover of this issue are Satoshi Maeda, Tsuyoshi Mita, and co-workers at ICReDD (Hokkaido University). The image depicts an Artificial Force Induced Reaction (AFIR) conducted on a supercomputer, which predicts a new chemical transformation and its application. Read the full text of the article at 10.1002/chem.202100812.

10.
Chemistry ; 27(39): 10040-10047, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929060

RESUMO

A three-component reaction (3CR) for the synthesis of difluoroglycine derivatives has been achieved by using amines, difluorocarbene (generated in situ), and the abundant, inexpensive, and nontoxic C1 source CO2 . Various tert-amines and pyridine, (iso)quinoline, imidazole, thiazole, and pyrazole derivatives were incorporated, and the corresponding products were isolated in solid form without purification by column chromatography on silica gel. Detailed reaction profiles of the 3CR were obtained from computational analysis using DFT calculations, and the results critically suggest that simple ammonia is not applicable to this reaction. In addition, as strongly supported by computational predictions, a new reagent that can generate difluorocarbene at 0 °C without any additives was discovered. Finally, radical substitution reactions of the obtained difluoroglycine derivatives under photoredox conditions, as well as a synthetic application as an N-heterocyclic carbene ligand are shown.


Assuntos
Aminas , Dióxido de Carbono , Hidrocarbonetos Fluorados
11.
Phys Chem Chem Phys ; 23(2): 834-845, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284297

RESUMO

Cinnamate derivatives are very useful as UV protectors in nature and as sunscreen reagents in daily life. They convert harmful UV energy to thermal energy through effective nonradiative decay (NRD) including trans → cis photoisomerization. However, the mechanism is not simple because different photoisomeirzation routes have been observed for different substituted cinnamates. Here, we theoretically examined the substitution effects at the phenyl ring of methylcinnamate (MC), a non-substituted cinnamate, on the electronic structure and the NRD route involving trans → cis isomerization based on time-dependent density functional theory. A systematic reaction pathway search using the single-component artificial force-induced reaction method shows that the very efficient photoisomerization route of MC can be essentially described as "1ππ* (trans) → 1nπ* → T1 (3ππ*) → S0 (trans or cis)". We found that for efficient 1ππ* (trans) → 1nπ* internal conversion (IC), MC should have the substituent at the appropriate position of the phenyl ring to stabilize the highest occupied π orbital. Substitution at the para position of MC slightly lowers the 1ππ* state energy and photoisomerization occurs via a slightly less efficient "1ππ* (trans) → 3nπ* → T1 (3ππ*) → S0 (trans or cis)" pathway. Substitution at the meta or ortho positions of MC significantly lowers the 1ππ* state energy so that the energy barrier of IC (1ππ* → 1nπ*) becomes very high. This substitution leads to a much longer 1ππ* state lifetime than that of MC and para-substituted MC, and a change in the dominant photoisomerization route to "1ππ* (trans) → C[double bond, length as m-dash]C bond twisting on 1ππ* → S0 (trans or cis)". As a whole, the "1ππ* → 1nπ*" IC observed in MC is the most important initial step for the rapid change of UV energy to thermal energy. We also found that the stabilization of the π orbital (i) minimizes the energy gap between 1ππ* and 1nπ* at the 1ππ* minimum and (ii) makes the 0-0 level of 1ππ* higher than 1nπ* as observed in MC. These MC-like relationships between the 1ππ* and 1nπ* energies should be ideal to maximize the "1ππ* → 1nπ*" IC rate constant according to Marcus theory.


Assuntos
Cinamatos/química , Processos Fotoquímicos , Protetores Solares/química , Cinamatos/efeitos da radiação , Teoria da Densidade Funcional , Isomerismo , Modelos Químicos , Protetores Solares/efeitos da radiação , Raios Ultravioleta
12.
J Comput Chem ; 41(16): 1549-1556, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239685

RESUMO

The semiclassical tunneling method is applied to evaluate the tunneling splitting of tropolone due to the intramolecular proton transfer in the electronic excited state, first time, in a framework of the trajectory on-the-fly molecular dynamics (TOF-MD) approach. To prevent unphysical zero-point vibrational energy transfer among the normal modes of vibration, quantum zero-point vibrational energies are assigned only to the vibrational modes related to intramolecular proton transfer, whereas the remaining modes are treated as bath modes. Practical ways to determine the tunnel-initiating points and tunneling path are introduced. It is shown that the tunneling splitting decreases as the bath-mode energy increases. The experimental tunneling splitting value is well reproduced by the present TOF-MD approach based on the Wentzel-Kramers-Brillouin (WKB) approximation.

13.
J Org Chem ; 85(1): 150-157, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31694377

RESUMO

A series of cyclo-meta-phenylene congeners with a variation of interphenylene bridges was synthesized by adopting concise synthetic routes to investigate the structure-fluorescence relationships of macrocycles. With fundamental UV-vis absorption and fluorescence spectra, no unique effect of the macrocyclic structures was noted. However, the fluorescence quantum yields were dramatically affected by the macrocyclic structures and varied at a range of 5-92%. The quantum yields qualitatively depended on the number of the vinylene-bridged phenanthrenylene panels, and the theoretical investigations revealed the energetic and structural effects of the phenanthrenylene panels during nanosecond photodynamic processes. A high energy barrier along the S0/S1 internal conversion path to reach the minimum energy conical intersection was necessary to hamper a nonradiative process, and with the transition state energy level of the excited singlet state being insensitive to macrocyclic structures, a low energy level of excited singlet states (S1MIN) was required to facilitate efficient fluorescence.

14.
Phys Chem Chem Phys ; 22(25): 13942-13950, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609130

RESUMO

Paths of Diels-Alder reactions between 2-vinylfuran and 3-methoxycarbonylcyclopentadienone were systematically explored by the multicomponent version of the artificial force induced reaction (MC-AFIR) method. In this reaction, the dynamical bifurcation in which a single transition state (TS) relates to two different products has been reported to occur [J. B. Thomas, et al., J. Am. Chem. Soc., 2008, 130, 14544-14555]. In this paper, based on the MC-AFIR method, we propose a procedure to systematically explore so called ambimodal TSs through which the dynamical bifurcation occurs. The present procedure finds candidates of TSs that may cause the dynamical bifurcation from the logs of an automated reaction path search by the MC-AFIR method, without any additional quantum chemical calculations. For this reaction, the MC-AFIR search found 125 unique TSs automatically. Among the 125 TSs, 19 were suggested as candidates, and finally, six including the one reported in the literature were confirmed to cause the dynamical bifurcation. The present procedure would be promising to find TSs involved in the dynamical bifurcation automatically.

15.
J Comput Chem ; 40(1): 72-81, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30277592

RESUMO

The electronic excited state reactivity of [Mn(im)(CO)3 (phen)]+ (phen = 1,10-phenanthroline; im = imidazole) ranging between 420 and 330 nm have been analyzed by means of relativistic spin-orbit time-dependent density functional theory and wavefunction approaches (state-average-complete-active-space self-consistent-field/multistate CAS second-order perturbation theory). Minimum energy conical intersection (MECI) structures and connecting pathways were explored using the artificial force induced reaction (AFIR) method. MECIs between the first and second singlet excited states (S1 /S2 -MECIs) were searched by the single-component AFIR (SC-AFIR) algorithm combined with the gradient projection type optimizer. The structural, electronic, and excited states properties of [Mn(im)(CO)3 (phen)]+ are compared to those of the Re(I) analogue [Re(im)(CO)3 (phen)]+ . The high density of excited states and the presence of low-lying metal-centered states that characterize the Mn complex add complexity to the photophysics and open various dissociative channels for both the CO and imidazole ligands. © 2018 Wiley Periodicals, Inc.

16.
Phys Chem Chem Phys ; 21(10): 5344-5358, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30484793

RESUMO

Femtosecond ultrafast electronic relaxation and vibrational dynamics in 2'-hydroxychalcone after deep ultraviolet (DUV) excitation were observed by two types of pump-probe spectroscopy experiments, i.e., DUV-pump pulse and visible-broadband-probe pulse (DUV/Vis) experiments and DUV-pump and DUV-probe (DUV/DUV) pulse experiments. Time-dependent density functional theory (TDDFT) calculations were performed to elucidate relaxation dynamics from the third singlet electronic excited state S3. The DUV/Vis experiments and TDDFT calculations have disclosed the ultrafast dynamics of internal conversion from the initial S3 state (τ1 ≈ 35 fs) to the S1 state via a rapid process through the S3/S2 conical intersection and proton transfer [OH: τ2(H) ≈ 93 and OD: τ2(D) ≈ 164 fs] before deactivation through the S1/S0 conical intersection (τ3 ≈ 690 fs). Thanks to the ultrashort pump and probe pulses, real-time observation of vibrational modes coupled to the electronic excitation was realized providing both amplitudes and phases. Spectrogram analyses were performed based on the real-time spectra obtained by the DUV/Vis experiments, in which instantaneous vibrational frequencies reflecting molecular structural change after the impulsive excitation were visualized. The vibrational frequency of central C[double bond, length as m-dash]C bond stretch decreases from ∼1600 cm-1 to ∼1560 cm-1 in about 200-500 fs and recovers in ∼550 fs. Normal mode analyses along the decay path support the observed variation of the C[double bond, length as m-dash]C stretching frequency. The temporal weakening of the central C[double bond, length as m-dash]C bond is connected with the angle of the two aromatic rings which flip back to the initial conformation.

17.
Phys Chem Chem Phys ; 21(36): 19755-19763, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31259349

RESUMO

The electronic states and photochemistry including nonradiative decay (NRD) and trans(E) → cis(Z) isomerization of methylcinnamate (MC) and its hydrogen-bonded complex with methanol have been investigated under jet-cooled conditions. S1(1nπ*) and S2(1ππ*) are directly observed in MC. This is the first direct observation of S1(1nπ*) in cinnamate derivatives. Surprisingly, the order of the energies between the nπ* and ππ* states is opposite to substituted cinnamates. TD-DFT and SAC-CI calculations support the observed result and show that the substitution to the benzene ring largely lowers the 1ππ* energy while the effect on 1nπ* is rather small. The S2(ππ*) state lifetime of MC is determined to be equal to or shorter than 10 ps, and the production of the transient T1 state is observed. The T1(ππ*) state is calculated to have a structure in which propenyl C[double bond, length as m-dash]C is twisted by 90°, suggesting the trans → cis isomerization proceeds via T1. The production of the cis isomer is confirmed by low-temperature matrix-isolated FTIR spectroscopy. The effect of H-bonding is examined for the MC-methanol complex. The S2 lifetime of MC-methanol is determined to be 180 ps, indicating that the H-bonding to the C[double bond, length as m-dash]O group largely prohibits the 1ππ* → 1nπ* internal conversion. This lifetime elongation in the methanol complex also describes well a higher fluorescence quantum yield of MC in methanol solution than in cyclohexane, while such a solvent dependence is not observed in para-substituted MC. Determination of the photochemical reaction pathways of MC and MC-methanol will help us to design photofunctional cinnamate derivatives.

18.
J Comput Chem ; 39(4): 233-251, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29135034

RESUMO

This article reports implementation and performance of the artificial force induced reaction (AFIR) method in the upcoming 2017 version of GRRM program (GRRM17). The AFIR method, which is one of automated reaction path search methods, induces geometrical deformations in a system by pushing or pulling fragments defined in the system by an artificial force. In GRRM17, three different algorithms, that is, multicomponent algorithm (MC-AFIR), single-component algorithm (SC-AFIR), and double-sphere algorithm (DS-AFIR), are available, where the MC-AFIR was the only algorithm which has been available in the previous 2014 version. The MC-AFIR does automated sampling of reaction pathways between two or more reactant molecules. The SC-AFIR performs automated generation of global or semiglobal reaction path network. The DS-AFIR finds a single path between given two structures. Exploration of minimum energy structures within the hypersurface in which two different electronic states degenerate, and an interface with the quantum mechanics/molecular mechanics method, are also described. A code termed SAFIRE will also be available, as a visualization software for complicated reaction path networks. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

19.
Photochem Photobiol Sci ; 17(3): 315-322, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29360113

RESUMO

Radiative and nonradiative decay paths from the first excited singlet electronic state (S1) in four heteroaromatics, indole, isoindole, quinoline, and isoquinoline, were systematically explored. Three decay processes, i.e., internal conversion (IC), intersystem crossing (ISC), and fluorescence emission (FE), were compared. Minimum energy conical intersection structures between the electronic ground and first excited states were investigated to determine the most preferred IC path. The minimum energy seam of crossing (MESX) geometries between S1 and the lowest-lying triplet states and the spin-orbit couplings at these MESX structures were computed to identify the most feasible ISC path. The oscillator strength was calculated at each S1 local minimum to reveal the contribution of the FE process. The calculations clearly showed that indole had the highest fluorescent quantum yield, consistent with the experimental data. The present calculations also explained other experimental properties of the heteroaromatics such as ISC quantum yields.

20.
Phys Chem Chem Phys ; 20(3): 1364-1372, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29260170

RESUMO

A methodology to analyze a trajectory on-the-fly (TOF) based on a global reaction route map consisting of intrinsic reaction coordinate (IRC) pathways is proposed. By using the distance functions in the configurational space, the location of each point on the trajectories is detected, providing a dynamical picture that the molecular system goes over several minima and transition states in the reaction path network. In its application to structural transformations of an Au5 cluster, a variety of reaction routes are obtained, and the hopping from one IRC to another IRC (IRC-jump) is analyzed. The branching of trajectories over many minima on the potential energy surface via valley-ridge transition points is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA